• Title/Summary/Keyword: ATENA 프로그램

Search Result 4, Processing Time 0.02 seconds

Nonlinear Analysis of Composite Basement Wall Using Contact Element (접촉면 요소를 사용한 합성 지하벽의 비선형 해석)

  • Seo, Soo Yeon;Lee, Chenggao
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.176-184
    • /
    • 2007
  • The objective of this paper is to suggest a nonlinear analysis process to predict the structural behavior and strength of composite basement wall member combined with H-Pile. Therefore, the structural behavior of composite basement wall is studied and the special nonlinear characteristics of each elements such as H-Pile, concrete wall, and shear connectors are idealized using ATENA program. Finally, the result is compared with previous test result. Research result shows that there is a good co-relation between analysis and test results even if analysis result has little bit higher initial stiffness than test result. It can be concluded that the nonlinear behavior of composite basement wall is suitably predicted by using the contact element model in ATENA program as shear connector element.

Shear Behavior of Web Element in PSC Beams Incorporated with Arch Action (아치작용을 고려한 PSC보의 복부전단거동)

  • Jeong, Je Pyong;Shin, Geun Ock;Kim, Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • It is well known that axial tension decreases the shear strength of RC & PSC beams without transverse reinforcement, and axial compression increases the shear resistance. What is perhaps not very well understood is how much the shear resistance capacity is influenced by axial load. RC beams without shear reinforcement subjected to large axial compression and shear may fail in a very brittle manner at the instance of first diagonal cracking. As a result, a conservative approach should be used for such members. According to the ACI Code, the shear strength in web is calculated by effect of axial force and the vertical force in the stirrups calculated by $45^{\circ}$ truss model. This study was performed to examine the effect of axial force in reinforced concrete beams by nonlinear FEM program (ATENA-2D).

A Study on the Character of Concrete compressive strength according to Bottom-Ash and Internal gap for Crack aspect predictions (Bottom-Ash를 활용한 콘크리트 압축강도와 내부 공극 특성 분석 및 균열양상 예측)

  • Jung, Woo-Young;Sim, Young-Hwan;Lee, Sang-Moon;Choi, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.713-716
    • /
    • 2008
  • In about the concrete application which recycles Ash the research came to be advanced as research in compliance with researchers relation actively in about cement substitutional concrete mixing ratio and burglar quality of existing. The research which it sees as fundamental research the research which it follows in cement substitutional concrete mixing ratio of existing and it researched different Bottom-Ash recycling qualities in about cup aggregate partial substitution Bottom-Ash application.

  • PDF

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.