• Title/Summary/Keyword: AT power simulation

Search Result 3,155, Processing Time 0.037 seconds

Design and Implementation of High Power Amplifier for IMT-2000 Repeater (IMT-2000 중계기용 전력증폭기의 설계 및 제작)

  • 최성열;방성일
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.329-332
    • /
    • 2000
  • In this paper, we made 5W 2stage power amplifier for IMT-2000 repeater. We designed this amplifier by harmonic balanced simulation using nonlinear model to minimize distortion. After simulation, we acquired 47㏈m 1㏈ compression point at 2110 ~ 2170MHz single tone input. In addition, the ACPR of this amplifier was good. The test result was 47㏈m 1㏈ compression point, 42.6㏈ gain, -36.16㏈c ACPR at 2.5MHz, -44.34㏈c ACPR at 5MHz and -51.67㏈c ACPR at 7.5MHz.

  • PDF

Study on the Simulation Model for applying PV Generation System to Micro-Grid based on Real Power System (실계통을 토대로한 마이크로그리드에 태양광 발전시스템을 적용하기 위한 시뮬레이션 모델에 관한 연구)

  • Lee, Kye-B.;Kim, Sung-Hyun;Son, Kwang M.;Jeon, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.520-521
    • /
    • 2008
  • This paper deals with simulation model of the micro-grid system based on the real power system and applying PV generation system to micro-grid system. PSCAD/EMTDC simulation model is developed for use in studying the effect of the dynamics of PV generation to the micro-grid system. Simulation results show that the addition of the PV system improves the voltage profile of the area. Case studies also show that power quality at the load side is improved via voltage compensation at the load bus.

  • PDF

Adoptability Review of a Rotor Airfoil (SW05) to an Agricultural Unmanned Helicopter Using CFD Analysis (CFD 분석을 통한 농용 무인헬리콥터 로터익형(SW05)의 적용성 검토)

  • Jung, Han-Kyung;Koo, Young-Mo
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.289-295
    • /
    • 2008
  • The task of chemical spraying has been seriously considered as an irritating and annoying job for Korean rice farmers. An agricultural unmanned helicopter was suggested to solve this problem so as the farmers to have more decent farming condition. The objectives of this study were to analyze the adoptability of an experimental rotor blade (SW05) using the CFD simulation and also to compare the simulation results with experimental results. The simulation results showed that the induced power of this rotor reached to $57{\sim}63%$ of total power and the profile power was about $37{\sim}43%$ of total power. Therefore it can be concluded that this rotor's performance characteristics were not so efficient for the size of unmanned helicopter due to the low induced power and high profile power relatively compared with ones of conventional rotors. The comparison with experimental results showed that the tested lifts were less than 70% of simulated ones at the grip pitch of $12^{\circ}$ and decreased to 40% at the $18^{\circ}$ grip pitch. Therefore, it can be concluded that the rotor was too oversized to be used for a 15.4 kW (21 PS) engine.

Modeling and Simulation Reactive Power Compensator using Multi-port Network Algorithm in Electrified Railway (다단자망 알고리즘을 이용한 급전시스템의 무효전력 보상 모델링 및 시뮬레이션)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.883-887
    • /
    • 2016
  • The power supply system in Korean electrified railway has adopted AT feeding. If a fault occurs in some substation for any reason, the vicinity substation must feed electric power on the outage substation through catenary. So, the feeding distance grows twice of the normal state at extended feeding condition. If substation's feeding distance is longer than normal condition, the catenary impedance and train to supply electric power from the substation. Therefore, the severe voltage drop can occur and power supply shall be not allowed. This paper presents the model of compensator against voltage drop using multi-port network algorithm. Whole traction power supply system can be analyzed with this model. Computer simulation including this model is performed based on real train schedule and increased schedule in case studies.

Simulation of High-Power Magnetron Oscillators Using a MAGIC3D Code (MAGIC3D 코드를 애용한 고출력 마그네트론 발진기의 시뮬레이션)

  • Jung, S.S.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.538-543
    • /
    • 2006
  • A high-Power continuous-wave (CW) ten-vane double-strapped magnetron oscillator has been investigated using three-dimensional (3D) particle-in-cell (PIC) numerical simulation code, MAGIC3D. The resonant modes and their resonant frequencies of the ten-vane strapped magnetron resonator were obtained to show a large mode separation near the ${\pi}$-mode. An electron cloud formed in an anode-cathode gap, called an interaction space was confined well enough to result in no leakage current. Five spokes were clearly observed in the electron cloud, which definitely ensured the ${\pi}$-mode oscillation in the ten-vane magnetron. Numerical simulations predicted that the saturated microwave output power measured at the coaxial output port was 5.41 kW at the microwave frequency of 893 MHz, corresponding to a power conversion efficiency of 72.6% when the external axial magnetic field was 1150 gauss and the electron beam voltage and current were 6 kV and 1.25 A, respectively.

Dynamic Model of PEM Fuel Cell Using Real-time Simulation Techniques

  • Jung, Jee-Hoon;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.739-748
    • /
    • 2010
  • The increased integration of fuel cells with power electronics, critical loads, and control systems has prompted recent interest in accurate electrical terminal models of the polymer electrolyte membrane (PEM) fuel cell. Advancement in computing technologies, particularly parallel computation techniques and various real-time simulation tools have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper builds upon both advancements and provides a means of optimized model construction boosting computation speeds for a fuel cell model on a real-time simulator which can be used in a power hardware-in-the-loop (PHIL) application. Significant improvement in computation time has been achieved. The effectiveness of the proposed model developed on Opal RT's RT-Lab Matlab/Simulink based real-time engineering simulator is verified using experimental results from a Ballard Nexa fuel cell system.

Shimmy Vibration Analysis of Steering Wheel including Hydraulic Power Steering System (유압동력 조향시스템의 동역학 모델링을 통한 시미진동 해석)

  • 손정현;유완석;김광석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.217-223
    • /
    • 2003
  • The power steering system has been adopted in most vehicle system for an easy maneuverability. In this paper, a hydraulic power steering(HPS) model for the computer simulation is developed and used to power steering simulation. The simulation shows that the steering wheel torque with HPS model is less than that without HPS model. In addition, the shimmy vibration at the steering wheel is also simulated and compared to the test data. The lateral displacement of the steering wheel is calculated by imposing the lateral acceleration of the knuckle as a vibration input. The frequency response of the steering wheel is in a good agreement to the test data.

Undergraduate Power Electronics Laboratory - Applying TSMST Method

  • Jakopovic, Zeljko;Sunde, Viktor;Benci, Zvonko
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.621-627
    • /
    • 2010
  • This paper presents a TSMST (Theory - Simulation - Measurement - Simulation - Theory) method for power electronics laboratory. The method successfully integrates theory, simulation and measurement, thus enabling better integration of student's knowledge and better usage of inadequate number of laboratory hours. Students are attracted with relatively simple tasks to be solved and modern, but economical laboratory equipment. A significant part of the assignments can be made at home, thus lowering the pressure on students to finish the tasks on time. The proposed method is described on three basic examples explaining characteristic phases of the TSMST method.

Design of the Hydro-Mechanical Transmission for a 55kW-Class Agricultural Tractor (55kW급 농업용 트랙터 정유압 기계식 변속기 설계)

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Kim, Yong Joo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • The purpose of this study was to suggest design criteria for the HMT (hydro-mechanical transmission) of a 55 kW-class agricultural tractor, develop a simulation model, and evaluate its performance such as axle rotational speed, tractor speed, and power transmission efficiency. In this study, the HMT comprised a compound planetary gear and a HSU (hydro-static unit), and the compound planetary gear comprised two planetary gear sets. The HMT has three gear stages, and the maximum tractor speed was selected as 40 km/h. The simulation time was set at 2736 hours considering the lifetime of the tractor, and the simulation was performed for each gear stage at the engine-rated power conditions. As a result of the simulation, the axle rotational speeds for each gear stage were 39, 77, and 158 rpm, respectively. The range of tractor speed for each gear stage were 1.05-10.22 km/h, 10.74-20.17 km/h, and 20.70-41.40 km/h, respectively. The APE (absolute percentage gear) for the tractor's maximum speed between target value and simulation results were 2.20%, 0.85%, and 3.50%, respectively. Also, the power transmission efficiency for each gear stage were 0-75%, 72-81%, and 69-81%, respectively. The simulation results for the power transmission efficiency of the HMT were similar with the results of the previous research. This was a basic study on the development of the HMT for an agricultural tractor. In future studies, it is necessary to develop a tractor platform and evaluate the performance. The comparison between the simulation model and the HMT tractor should be performed.

Analysis of Utilizing Regenerative Energy in Railway System through a DC Power Supply Simulation (DC 급전시뮬레이션을 통한 도시철도 회생에너지 활용 분석)

  • Shin, Seungkwon;Jung, Hosung;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1479-1484
    • /
    • 2014
  • This paper deals with regenerative energy in railway system which one of the largest customer in terms of load capability. Unlike the other loads of power system, loads of railway systems change in time and space. It has a characteristic amount of generating regenerative energy by frequent starting and braking in railway system. Therefore, it is expected higher utilization in railway system than the other systems. The purpose of DC power supply simulation is analyzing backed energy, regenerative energy by each railway vehicle and substation. In this paper, regenerative energy utilization are analyzed using DC power supply simulation and it is performed changing major influence on the design such as the number of installing absorber, internal resistance value, no-load voltage value at substation or operating parameters at regenerative energy utilization. After simulating, results are compared and analyzed.