• Title/Summary/Keyword: AT&TI

Search Result 6,040, Processing Time 0.033 seconds

Effect of Heating Rate on Self-Propagating, High-Temperature Synthesis of $TiAl_3$ Intermetallic from Multi-Layered Elemental Foils (다층원소박판에서 $TiAl_3$의 고온자전합성에 미치는 승온속도의 영향)

  • Kim, Yeon-Uk;Kim, Byeong-Gwan;Nam, Tae-Un;Heo, Bo-Yeong;Kim, Yeong-Jik
    • Korean Journal of Materials Research
    • /
    • v.8 no.11
    • /
    • pp.987-992
    • /
    • 1998
  • Titanium aluminide intermetallic compound was formed from high purity elemental Ti and A1 foils by selfpropagating, high-temperature synthesis(SHS1 in hot press. Formation of $TiAl_3$ intermetallics at the interface between Ti and Al foil was observed to be controlled by temperature, pressure and heating rate. Especially, the heating rate is the most important role to form intermetallic compound by SHS reaction. According to DTA experiment, the SHS reactions appeared at two different temperatures below and above the melting point of Al. It was also observed that both SHS reaction temperatures increased with increasing the heating rate. After the SHS reaction of alternatively layered 10 Ti and 9 A1 foils at the heating rate of $20^{\circ}C$/min, the $700\mu\textrm{m}$ thick titanium aluminide sheet was formed by heat treatment at $810^{\circ}C$ for 4hours.

  • PDF

A Study on Microstructure and Tribological Behavior of Superhard Ti-Al-Si-N Nanocomposite Coatings (초고경도 Ti-Al-Si-N 나노복합체 코팅막의 미세구조 및 트라이볼로지 거동에 관한 연구)

  • Heo, Sung-Bo;Kim, Wang Ryeol
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.230-237
    • /
    • 2021
  • In this study, the influence of silicon contents on the microstructure, mechanical and tribological properties of Ti-Al-Si-N coatings were systematically investigated for application of cutting tools. The composition of the Ti-Al-Si-N coatings were controlled by different combinations of TiAl2 and Ti4Si composite target powers using an arc ion plating technique in a reactive gas mixture of high purity Ar and N2 during depositions. Ti-Al-Si-N films were nanocomposite consisting of nanosized (Ti,Al,Si)N crystallites embedded in an amorphous Si3N4/SiO2 matrix. The instrumental analyses revealed that the synthesized Ti-Al-Si-N film with Si content of 5.63 at.% was a nanocomposites consisting of nano-sized crystallites (5-7 nm in dia.) and a three dimensional thin layer of amorphous Si3N4 phase. The hardness of the Ti-Al-Si-N coatings also exhibited the maximum hardness value of about 47 GPa at a silicon content of ~5.63 at.% due to the microstructural change to a nanocomposite as well as the solid-solution hardening. The coating has a low friction coefficient of 0.55 at room temperature against an Inconel alloy ball. These excellent mechanical and tribological properties of the Ti-Al-Si-N coatings could help to improve the performance of machining and cutting tool applications.

Physicochemical properties of different phases of titanium dioxide nanoparticles

  • Dong, Vu Phuong;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.105-110
    • /
    • 2021
  • The physicochemical properties of crystalline titanium dioxide nanoparticles (TiO2 NPs) were investigated by comparing amorphous (amTiO2), anatase (aTiO2), metaphase of anatase-rutile (arTiO2), and rutile (rTiO2) NPs, which were prepared at various calcination temperatures (100℃, 400℃, 600℃, and 900℃). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed that the phase-transformed TiO2 had the characteristic features of crystallinity and average size. The surface chemical properties of the crystalline phases were different in the spectral analysis. As anatase transformed to the rutile phase, the band of the hydroxyl group at 3,600-3,100 cm-1 decreased gradually, as assessed using Fourier transform infrared spectroscopy (FT-IR). For ultraviolet-visible (UV-Vis) spectra, the maximum absorbance of anatase TiO2 NPs at 309 nm was blue-shifted to 290 nm at the rutile phase with reduced absorbance. Under the electric field of capillary electrophoresis (CE), TiO2 NPs in anatase migrated and detected as a broaden peak, whereas the rutile NPs did not. In addition, anatase showed the highest photocatalytic activity in an UV-irradiated dye degradation assay in the following order: aTiO2 > arTiO2 > rTiO2. Overall, the phases of TiO2 NPs showed characteristic physicochemical properties regarding size, surface chemical properties, UV absorbance, CE migration, and photocatalytic activity.

Densification Behavior of $BaTiO_3$ Ceramics with Grain Growth ($BaTiO_3$ 요업체에서 입성장에 따른 치밀화 거동)

  • 이태헌;김정주;김남경;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 1995
  • Variation of sintered density of BaTiO3 powder calcined at 120$0^{\circ}C$ and 135$0^{\circ}C$ was investigated with respect to the grain growth behavior. It was found that BaTiO3 powder, which was calcined at 120$0^{\circ}C$, showed abnormal grain growth behavior during sintering process. At initial stage of sintering process, the densification rate of specimen was accelerated with rapid grain growth caused by the abnormal grain growth. But with the increase of sintering time, abnormally grown grain met each other and the density of specimen decreased drastically due to coalescence of pores located in triple junction. On the contrary, BaTiO3 powder calcined at 135$0^{\circ}C$ showed normal grain growth behavior and gradually densified with the increase of sintering time.

  • PDF

Characteristics of Ti-Ni-(XCu) Shape Memory Alloy Powders made by Gas Atomization Process (가스 분무법으로 제조한 Ti-Ni-XCu 형상기억합금분말의 특성)

  • 징동훈
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.171-177
    • /
    • 1999
  • Ti-45.2at.%Ni-5at.%Cu and Ti-40.2at.%Ni-10atat.%Cu alloy powders were fabricated by gas atomization process. The microstructures, Shape, hardness and phase transformation behaviors of the powders were investigated by means of optical microscopy, scanning electron microscopy, micro-hardness measurement, x-ray diffraction analyses and differential scanning calorimetry. The hardness of the Ti-Ni-XCu alloy powders decreased as Cu-content increased. The x-ray diffraction analyses were carried out for powders without heat treatment, and those that treated at 85$0^{\circ}C$ for an hour in a vaccum state($10^5$ torr) and then quenched into ice water. The intensity of B$19^t$ phase increased with heat treating. The monoclinic B$19^t$ martensite was formed in the Ti-Ni-XCu alloy powders during cooling.

  • PDF

Influence of Compositions of Sintered Ti-Ni Alloys on their Thermo-mechanical Properties

  • Kyogoku, Hideki;Ikeda, Tetsuya;Komatsu, Shinichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.81-82
    • /
    • 2006
  • This paper presents the influence of the compositions of sintered Ti-Ni alloys on their thermo-mechanical properties. The Ti-Ni alloys having various compositions from 50at%Ni to 51at%Ni were sintered using elemental Ti and Ni powders by a pulse-current pressure sintering equipment. The deformation resistance in stress-strain curves increased with an increase in Ni content. In the case of Ti-50at%Ni, tensile strength and elongation were more than 500 MPa and 7%, respectively. The increase in Ni content also makes the transformation temperatures lower. The deformation resistance at a test temperature change from 293K and 353K in isothermal tensile test increased with elevating test temperature.

  • PDF

The Effect of Heat Treatment on the Tensile Properties of TiNi/6061Al Composites (TiNi/6061Al 복합재료의 인장특성에 미치는 열처리의 영향)

  • Park, Sung-Ki;Shin, Soon-Gi;Lee, Jun-Hee
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.64-68
    • /
    • 2003
  • The 1.6 vol% and 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting for investigating the effect of heat treatment on tensile strength for composites. The tensile strength without T6 treatment at 293 K was increased with increasing the volume fraction of TiNi fiber and at 363 K the higher the pre-strain, the higher the tensile strength. The tensile strength of the composite with $T_{6}$ treatment at 293 K was found to increase with increasing both the amount of pre-strain and the volume fraction of TiNi fiber and was higher than that without $T_{6}$ treatment. It should be noted that the tensile strength 2.5vol%TiNi/6061Al composites rolled at a 38% reduction ratio was the maximum value of 298 MPa. The tensile strength of composites decreased with increasing the reduction ratio over 38% because of the rupture of TiNi fiber.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Preparation and Characterization of $TiO_2$ Membranes for Microfiltration ($TiO_2$ 정밀여과막의 제조 및 특성)

  • 한상욱;최세영;현상훈;조철구;강한규
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.700-708
    • /
    • 1996
  • TiO2 membranes for microfiltration were prepared on $\alpha$-alumina support tube by slurry coating. The coating layer was obtained by flowing TiO2 slip on the inner surface of the alumina support. TiO2 membranes were heat-treated at 9$25^{\circ}C$ for 2 hrs. The thickness of the unsupported membrane was about 10${\mu}{\textrm}{m}$. The mean pore diameter of the membranes were 0.09 and 0.15${\mu}{\textrm}{m}$ respectively and the pure water flux was 900~1,200ι/m2.hr at room temperature and 1 bar. For a possible application of oily wastewater treatement an kerosene/wa-ter emulsion was separated in terms of flux and removal efficiency. In 60 min of operating time the flux of TiO2 membranes was 50~100 ι/m2.hr and removal efficiency was over 97% at 3kgf/cm2 of operating pres-sure and 600 ml/min of flow rate. TiO2 membranes could be recycled by reheat treatments at $600^{\circ}C$ for 2 hrs.

  • PDF

Effects of Titanium, Hafnium and Zircornium Alloying Elements on Microstructures and $D0_3{\leftrightarrow}B2$ Transition Temperature of Fe-30Al-5Cr Alloys (Fe-30Al-5Cr 합금의 미세조직 및 $D0_3{\leftrightarrow}B2$ 천이온도에 미치는 Ti, Hf 및 Zr의 첨가효과)

  • Kim, Sung-Su;Joo, Sung-Min;Oh, Seon-Hun;Kim, Kwan-Hyu;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.21 no.1
    • /
    • pp.15-23
    • /
    • 2001
  • The changes in the microstructures and $D0_3{\leftrightarrow}B2$ transition temperature were investigated for Fe-30at.%AI-5at.%Cr alloy with the ordered $D0_3$, structure when Ti, Hf and Zr were added respectively. The addition of Cr has no effect on the microstructure. However, as the amount of Ti addition increased, the grain size became smaller. Addition of Ti+Hf, Ti+Zr and Ti+Hf+Zr also showed the similar effect. When 20at.% of Ti was added, the second phase precipitates on the substrate. The addition of Cr, Hf and Zr alone has no effect on $D0_3{\leftrightarrow}B2$ transition temperature. However, as the amount of Ti addition increased by 5, 10, 15 and 20at.%, the transition temperatures showed 929, 930, 960 and $930^{\circ}C$ respectively.

  • PDF