• Title/Summary/Keyword: ASTM E 2249-02

Search Result 9, Processing Time 0.025 seconds

Sound Insulation Performance of the Foamed Aluminum Sandwich Panel for a Railway Vehicle (발포 알루미늄 샌드위치 패널의 차음성능)

  • Ahn, Yong-Chan;Lee, Joong-Hyuk;Byeon, Jun-Ho;Kim, Seock-Hyun
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.1-4
    • /
    • 2017
  • Speeding up of railway vehicles requires weight reduction of the vehicle body. However, when the vehicle body is lighter, the sound insulation performance for blocking the noise from the outside is reduced. Aluminum is an important material used in the bodywork of transportation vehicles such as railway vehicles, aircraft, and automobiles. In this study, the bending stiffness and sound insulation performance of foamed aluminum with sandwich structure are investigated experimentally. The transmission loss is measured in accordance with the international standard ASTM E 2249-02. The mass-law deviation is used to evaluate the sound insulation performance per weight. In order to examine the applicability of the foamed aluminum sandwich panel to railway vehicles, the analysis of bending stiffness and an experimental review are carried out at the same time.

Improvement Effect of the Sound Insulation Performance of the Corrugated Steel Panel by Sound Absorbing and Damping Materials (흡음 및 댐핑재 의한 주름강판의 차음성능 개선효과)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.476-480
    • /
    • 2010
  • In the corrugated steel panels used for railway vehicles, sound insulation performance is significantly deteriorated by local resonance effect. In this study, as a countermeasure, polyurethane foam is filled in the corrugated steel panel and glass wool layer is inserted in the layered floor panel, and then improvement effect of the sound insulation performance is experimentally estimated. Based on ASTM E2249-02, intensity transmission loss is measured and estimated on the corrugated panel and floor structure. The aim of the study is to identify how the foam filling and inserting glass wool layer improve the sound insulation performance of the train body structure in aspect of the weight increment.

Sound Insulation Strategy for the Tunnel Noise in a High Speed Train (고속철도차량의 터널 소음을 위한 차음 전략)

  • Kim, Seock-Hyun;Lee, Ho-Jin;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.315-322
    • /
    • 2012
  • In a tunnel, interior noise of a high speed train increases by 5dB~7dB. The reason is that the sound intensity of the acoustic field in the tunnel significantly increases by the reflected waves occurred in the closed space. Especially, the incident acoustic power largely increases on the outside of the compartment side panel and large transmission of noise is available through the side panel and the glass window. In this paper, the sound insulation strategy in the tunnel is proposed for the next generation high speed train under development. Specimens of the aluminum extruded panels, layered panels and double glazed window are manufactured and intensity transmission loss is measured according to ASTM E2249-02. Based on the measured data, problems in the sound insulation performance are diagnosed and the sound insulation strategy is reviewed on each panel and layered structures.

Sound Insulation Performance of Honeycomb Composite Panel for a Tilting Train (틸팅 열차용 허니콤 복합 적층재의 차음성능)

  • Kim, Seock-Hyun;Seo, Tae-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1931-1936
    • /
    • 2010
  • In Korean tilting trains, honeycomb composite panels are used for high speed and light weight. The side wall of a tilting train consists of an aluminum honeycomb coated with carbon-fiber-reinforced epoxy skin and a nomex honeycomb panel as the main structure, with glass wool inserted between the panels. In this study, based on ASTM E2249-02, we measure the intensity sound transmission loss (TL) of the honeycomb composite panels. Using mass law deviation (MLD), we estimate the sound insulation performance of the honeycomb composite panels in terms of their weight and explore the feasibility of substituting a conventional corrugated steel panel. The transmission-loss data of the honeycomb composite panels obtained in the study will be used to establish noise-reduction measures for train compartments.

A Method of Analysis to Predict Sound Transmission Loss of an Extruded Aluminum Panel for Use on Railway Vehicles (철도차량용 알루미늄 압출재의 음향 투과손실 예측에 관한 연구)

  • Kim, Kwanju;Lee, Jun-Heon;Kim, Dae-Yong;Kim, Seock-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.20-25
    • /
    • 2013
  • The frame elements of modern high speed trains are typically fabricated with extruded aluminum panels. However, the sound transmission loss (STL) of extruded aluminum panels is less satisfactory than flat panels with the same surface density. This study proposes a method for prediction of the sound transmission loss of extruded aluminum panels using finite element analysis. The panel is modeled by finite element analysis, and the STL is calculated using a measure of Sommerfeld radiation at the specimen surface, boundary conditions, and the internal loss factor of the material. In order to verify the validity of the predicted value, intensity transmission loss was measured on the aluminum specimen according to ASTM E2249-02. The proposed method of analysis will be utilized to predict the sound insulation performance of extruded aluminum panels for railway vehicles in the design stage, and to establish measures for their improvement.

An Estimation of the Sound Insulation Performance of the Multi-layered Panel for a Tilting Train (틸팅 차량용 적층재의 차음성능 평가)

  • Seo, Tae-Gun;Lim, Bong-Gi;Kim, Seock-Hyun;Kim, Jae-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.597-600
    • /
    • 2009
  • Sound transmission loss (TL) is experimently investigated on the multi-layered panel used for the floor of a tilting train. Measurement of the intensity transmission loss is performed according to ASTM E 2249-02. The floor structure consists of corrugated steel panel, glass wool, plywood and cover. On the corrugated steel panel, TL drop by local resonance is considered and the TL improvement effect by damping treatment is estimated. Total sound transmission loss of the entire floor structure is obtained and the contribution of each layer is examined.

  • PDF

Sound Insulation Performance of the Layered Structure of the Next Generation High Speed Train (차세대 고속철도 차량 적층 구조의 차음성능)

  • Lee, Jung-Hyeok;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.326-331
    • /
    • 2011
  • Aluminum extruded panel used in a high speed train shows high stiffness, however, its sound insulation performance is remarkably decreased by local resonance phenomena. In this paper, improvement strategy of the sound insulation performance is proposed for the floor extruded panel used in HEMU-400x, 400km/h class next generation high speed train under development, and the improvement effect is verified by experiment. Aluminum extruded panel specimen for the floor is manufactured and urethane foam is installed in the core of the panel. Based on ASTM E2249-02, intensity transmission loss is measured and the improvement effect in local resonance frequency band is verified. Finally, improvement effect of the sound insulation performance is estimated on the layered floor structure including the foamed aluminum panel.

  • PDF

Sound Insulation Performance of the Multi-layered Window Structures for the Express Trains (고속철도 차량용 다층 유리창 구조의 차음성능)

  • Lee, Ho-Jin;Lee, Jung-Hyeok;Park, In-Seok;Kim, Seock-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2256-2262
    • /
    • 2011
  • In this study, sound transmission loss (STL) is investigated on the multi-layered windows used in the KTX-sancheon and next generation HEMU-400x high speed train. Using TLOSS, which is developed as a special purpose STL analysis program, STLs of the multi-layered glass windows are analytically investigated and compared with the mass law result. Window specimens for the two train models are manufactured and intensity transmission losses are measured based on ASTM E2249-02. The problems in aspect of sound insulation are diagnosed on the two window models. The aim of this study is to provide useful data for the improvement of the interior noise in the high speed train.

  • PDF

Sound Insulation Strategy of the Side Panels in a Tilting Train (틸팅열차 측면재의 차음 전략)

  • Kim, Seockhyun;Seo, Taegun
    • Journal of Industrial Technology
    • /
    • v.31 no.A
    • /
    • pp.33-38
    • /
    • 2011
  • In an express tilting train, side wall insulating the noise from the exterior sound source consists of two parts. One is the layered composite panel including aluminum honeycomb, glass wool and nomex honeycomb. The other is the double glazed window. In this study, sound insulation performance of the two parts is investigated by mass law and experiment. Based on ASTM E2249-02, the intensity sound transmission loss (TL) is measured on the specimens of the two parts. Mass law deviation (MLD) is considered in order to compare the sound insulation performance in respect of weight. Contribution of each part to the sound insulation is analyzed and the sound insulation strategy for the interior noise reduction is investigated.

  • PDF