• Title/Summary/Keyword: ASPEN

Search Result 192, Processing Time 0.028 seconds

Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure (고압고온 재생조건에서의 암모니아수-CO2 반응특성)

  • Kim, Yun Hee;Yi, Kwang Bok;Park, Sung Youl;Ko, Chang Hyun;Park, Jong-Ho;Beum, Hee Tae;Han, Myungwan;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.253-258
    • /
    • 2010
  • In the field of the $CO_2$ absorption process using aqueous ammonia, the effects of regeneration pressure and temperature on $CO_2$ absorption performances of the aqueous ammonia were investigated. The absorbents were prepared by dissolving ammonium carbonate solid in water to grant the resulted solution 0.5 $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) and various ammonia concentration (14, 20, 26 and 32 wt%). As-prepared absorbents were regenerated at high pressure and temperature (over $120^{\circ}C$ and 6 bar) before the absorption test. The absorption test was carried out by injecting the simulated gas that contains 12 vol% of $CO_2$ into a bubbling reactor. The introduction of 26 wt% of the ammonia concentration for $CO_2$ absorption test resulted in the higher absorption capacities than other experimental conditions. In particular, when the absorbents with 26 wt% of the ammonia were regenerated at $150^{\circ}C$ and 14 bar, the highest absorption capacity, $45ml\;CO_2/g$, was obtained. According to the analysis of absorbents using acid-base titration, the ammonia loss during the regeneration of the absorbents with a fixed ammonia concentration decreased as the regeneration pressure increased, while it increased as the regeneration temperature increased. In the condition of fixed regeneration pressure and temperature, as expected, the ammonia loss increased as the ammonia concentration increased. The measured $CO_2$ loadings and ammonia concentrations of absorbents were compared to the values calculated by Electrolyte NRTL model in Aspen Plus.

Performance Analysis on the Multi Stage Reheater Regeneration Cycle for Ocean Geothermal Power Generation (해양지열발전용 다단재열재생사이클 성능해석)

  • Lee, Ho Saeng;Cha, Sang Won;Jung, Young Kwon;Kim, Hyeon Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.116-121
    • /
    • 2014
  • In order to study the improvement of the multi stage regeneration cycles, muti-stage processes were applied to the cycles, respectively or together. The kinds of the cycles are multi stage reheater cycle (MS) and multi stage reheater regeneration cycle (MSR). Working fluid used was R134a and R245fa. Temperature of the heat source was $65^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$, and temperature of the heat sink was $5^{\circ}C$. Optimization simulation was conducted for improving the gross power and efficiency with multi stage reheater regeneration cycle for ocean thermal energy conversion(OTEC) with changing of a heat source, kind of the working fluid, and type of the cycle. Performance analysis of the various components was simulated by using the Aspen HYSYS for analysis of the thermodynamic cycle. R245fa shows better performance than R134a. This paper showed the most suitable working fluid with changing of a heat source and the kinds of working cycle. Compared to each other, MS showed better performance at gross power and MSR showed higher cycle efficiency.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Characteristics and Modeling Analysis of Entrained Flow Gasifiers (분류층 가스화기 특징 및 공정모사 분석)

  • Yoo, Jeongseok;Kim, Youseok;Paek, Minsu
    • New & Renewable Energy
    • /
    • v.9 no.3
    • /
    • pp.20-28
    • /
    • 2013
  • The gasification process has developed to convert coal into the more useful energy and material since decades. Despite the numberous design of ones, entrained flow gasifier of the major companies has had an advantage on the market. Because it has a merit of full-scale and high performance plant. In this paper, the gasification technologies of GE energy, Phillips, Siemens and Shell have been reviewed to compare their characteristics and a high performance gasification process was suggested. And the simulation model of gasifiers using Aspen Plus offered the quantitative comparison data for difference designs. The simulation results revealed the poor performance of the slurry feed than dry design. The corresponding cold gas efficiency of 77% is much lower than the 80.3% for the dry feed cases. The exergy analysis of the difference syngas quenching system showed that chemical quenching is superior to another. The results of analysis recommend the two stage gasifier with dry multi-feeder as the energy effective design.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.

Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed (유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향)

  • Kim, Tae-Hyun;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Design and Assessment of an Oil-treatment Process for Bitumen Separation (비투멘 유체 분리를 위한 오일처리공정의 설계와 평가)

  • Jeong, Moon;Lee, Sang-Jun;Shin, Heung-Sik;Jo, Eun-Bi;Hwang, In-Ju;Kang, Choon-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The purpose of this paper is to define criteria to be used as part of the engineering design for an oil sands plant equipped with the steam assisted gravity drainage process. In this effort, the oil treatment process of an oil sands plant on a pilot scale was focused for detailed investigation. The thermodynamic properties of the process fluid, which is mainly composed of bitumen and water, were estimated with the CPA model. The commercial tool aspen HYSYS was used for the analysis throughout this work along with the provided input data and some necessary assumptions. From the simulation results, the heat and mass balances for a 300 BPD plant were established in order to define standard data for its modular design. In particular, the basis of design for equipment size, heat transfer areas, capital cost and operation cost was extensively discussed.

The Performance Analysis of Multi Stage Reheater Organic Rankine Cycle According to Heat Sink Temperature Change (냉열원 온도 변화에 따른 다단재열랭킨사이클의 성능해석)

  • Lee, Ho-Saeng;Lim, Seung-Taek;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-17
    • /
    • 2016
  • In this study, the simulation for performance comparison between basic single stage organic rankine cycle, multi stage reheater cycle and multi stage reheater & recuperator cycle was carried out. The multi stage reheater cycle and multi stage reheater & recuperator cycle was designed to improve the efficiency for organic rankine cycle using heat source from industrial waste heat and heat sink from deep ocean water. R245fa was selected as a refrigerant for the cycle and system efficiencies were simulated by the variation of the heat sink temperature and the cycle classification. Performance characteristics were simulated by using the Aspen HYSYS. It was confirmed that the system efficiency was decreased by the increase of heat sink temperature. These results can be considered to be applied as geo-ocean thermal energy conversion in where plenty of geothermal or ocean thermal resource exist.

Nutritional Physiology and improvement of substrate of Lentinus edodes (표고 버섯(Lentinus edodes)의 영양생리 및 기질개발)

  • Park, Won-Mok;Song, Chi-Hyeun;Hyun, Jae-Wook
    • The Korean Journal of Mycology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 1992
  • Researches were carried out to find the optimal conditions of carbon sources, nitrogen sources and pH for the maximum production of sporophore of Lentinus edodes. Dextrin, aspartic acid and pH 4.0 were the best conditions for yield of sporophore by using replacement culture technique. The production of sporophore was stimulated by addition of 0.8% triacylglycerol in NS medium. Coffee waste was chosen for the best substrate among the poplar, oak, white aspen saw dust and coffee waste. Increased growth of mycelim and yield of sporophore was obsewed by adding tannin up to 0.1% as substrate.

  • PDF

Enzymatic hydrolysis and micro-structure of ozone treated wood meal (오존 처리에 의한 목재 세포벽의 미세구조변화와 효소가수분해)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.67-73
    • /
    • 2010
  • Pine (Pinus densiflora) and aspen (Populus euramericana) wood meals were treated with ozone at various time schedule in acidic condition. The lignin contents and surface area of the ozone treated wood meals were determined and the enzymatic hydrolysis rate of ozonated wood meals was evaluated. The feasibility of enzymatic hydrolysis of the ozone treated wood meal was obviously influenced with the degree of delignification. After ozone treatment of wood meal for 10min, total pore volume were slightly increased in the surface of wood meal. When wood meals were treated with ozone longer than 10min, few change in the pore volume was observed. However, the area of over $50{\AA}$ of pore size is increased with ozonation time. As a conclusion, the rate of enzymatic hydrolysis of wood is more effective with the pore size distribution than the total pore volume.