• Title/Summary/Keyword: ASOS Data

Search Result 115, Processing Time 0.023 seconds

Calculation of Soil Moisture and Evapotranspiration for KLDAS(Korea Land Data Assimilation System) using Hydrometeorological Data Set (수문기상 데이터 세트를 이용한 KLDAS(Korea Land Data Assimilation System)의 토양수분·증발산량 산출)

  • PARK, Gwang-Ha;LEE, Kyung-Tae;KYE, Chang-Woo;YU, Wan-Sik;HWANG, Eui-Ho;KANG, Do-Hyuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.65-81
    • /
    • 2021
  • In this study, soil moisture and evapotranspiration were calculated throughout South Korea using the Korea Land Data Assimilation System(KLDAS) of the Korea-Land Surface Information System(K-LIS) built on the basis of the Land Information System (LIS). The hydrometeorological data sets used to drive K-LIS and build KLDAS are MERRA-2(Modern-Era Retrospective analysis for Research and Applications, version 2) GDAS(Global Data Assimilation System) and ASOS(Automated Synoptic Observing System) data. Since ASOS is a point-based observation, it was converted into grid data with a spatial resolution of 0.125° for the application of KLDAS(ASOS-S, ASOS-Spatial). After comparing the hydrometeorological data sets applied to KLDAS against the ground-based observation, the mean of R2 ASOS-S, MERRA-2, and GDAS were analyzed as temperature(0.994, 0.967, 0.975), pressure(0.995, 0.940, 0.942), humidity (0.993, 0.895, 0.915), and rainfall(0.897, 0.682, 0.695), respectively. For the hydrologic output comparisons, the mean of R2 was ASOS-S(0.493), MERRA-2(0.56) and GDAS (0.488) in soil moisture, and the mean of R2 was analyzed as ASOS-S(0.473), MERRA-2(0.43) and GDAS(0.615) in evapotranspiration. MERRA-2 and GDAS are quality-controlled data sets using multiple satellite and ground observation data, whereas ASOS-S is grid data using observation data from 103 points. Therefore, it is concluded that the accuracy is lowered due to the error from the distance difference between the observation data. If the more ASOS observation are secured and applied in the future, the less error due to the gridding will be expected with the increased accuracy.

Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products (Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가)

  • Park, SeongWook;Kim, MinSik
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.463-473
    • /
    • 2021
  • Recently, United States Geological Survey (USGS) distributed Landsat 8 Collection 2 Level 2 Science Product (L2SP). This paper aims to derive land surface temperature from L2SP and to validate it. Validation is made by comparing the land surface temperature with the one calculated from Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) and the one from Automated Synoptic Observing System (ASOS). L2SP is calculated from Landsat 8 Collection 2 Level 1 data and it provides land surface temperature to users without processing surface reflectance data. Landsat 8 data from 2018 to 2020 is collected and ground sensor data from eight sites of ASOS are used to evaluate L2SP land surface temperature data. To compare ground sensor data with remotely sensed data, 3×3 grid area data near ASOS station is used. As a result of analysis with ASOS data, L2SP and L1TP land surface temperature shows Pearson correlation coefficient of 0.971 and 0.964, respectively. RMSE (Root Mean Square Error) of two results with ASOS data is 4.029℃, 5.247℃ respectively. This result suggests that L2SP data is more adequate to acquire land surface temperature than L1TP. If seasonal difference and geometric features such as slope are considered, the result would improve.

Development of Observational Environment Evaluation Model for Sunshine Duration at ASOSs Located in Urban Areas (도시지역 유인관측소 일조 관측환경 평가 모델 개발)

  • Kim, Do-Yong;Kim, Do-Hyoung;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2013
  • In this study, the numerical model was developed to evaluate the observational environment of sunshine duration and, for evaluating the accuracy and utility of the model, it was verified against the observational data measured at Dae-gu Automated Synoptic Observing System (ASOS) located in an urban area. Three-dimensional topography and building configuration as the surface input data of the model were constructed using a Geographic Information System (GIS) data. First, the accuracy of the computing planetary positions suggested by Paul Schlyter was verified against the data provided by Korea Astronomy and Space Science Institute (KASI) and the results showed that the numerical model predicted the Sun's position (the solar azimuth and altitude angles) quite precisely. Then, this model was applied to reproduce the sunshine duration at the Dae-gu ASOS. The observed and calculated sunshine durations were similar to each other. However, the observed and calculated sunrise (sunset) times were delayed (curtailed), compared to those provided by KASI that considered just the ASOS's position information such as latitude, longitude, and elevation height but did not consider the building and topography information. Further investigation showed that this was caused by not only the topographic characteristic (higher in the east and lower in the west) but also the buildings located in the southeast near the sunrise and the southwest near the sunset. It was found that higher building resolution increased the accuracy of the model. It was concluded that, for the accurate evaluation of the sunshine duration, detailed building and topography information around the observing sites was required and the numerical model developed in this study was successful to predict and/or the sunshine duration of the ASOS located in an urban area.

Comparisons of 1-Hour-Averaged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations (고해상도 재분석자료와 관측소 1시간 평균 지상 온도 비교)

  • Song, Hyunggyu;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.95-110
    • /
    • 2020
  • Comparisons between two different surface temperatures from high-resolution ECMWF ReAnalysis 5 (ERA5) and Automated Synoptic Observing System (ASOS) observations were performed to investigate the reliability of the new reanalysis data over South Korea. As ERA5 has been recently produced and provided to the public, it will be highly used in various research fields. The analysis period in this study is limited to 1999-2018 because regularly recorded hourly data have been provided for 61 ASOS stations since 1999. Topographic characteristics of the 61 ASOS locations are classified as inland, coastal, and mountain based on Digital Elevation Model (DEM) data. The spatial distributions of whole period time-averaged temperatures for ASOS and ERA5 were similar without significant differences in their values. Scatter plots between ASOS and ERA5 for three different periods of yearlong, summer, and winter confirmed the characteristics of seasonal variability, also shown in the time-series of monthly error probability density functions (PDFs). Statistical indices NMB, RMSE, R, and IOA were adopted to quantify the temperature differences, which showed no significant differences in all indices, as R and IOA were all close to 0.99. In particular, the daily mean temperature differences based on 1-hour-averaged temperature had a smaller error than the classical daily mean temperature differences, showing a higher correlation between the two data. To check if the complex topography inside one ERA5 grid cell is related to the temperature differences, the kurtosis and skewness values of 90-m DEM PDFs in a ERA5 grid cell were compared to the one-year period amplitude among those of the power spectrum in the time-series of monthly temperature error PDFs at each station, showing positive correlations. The results account for the topographic effect as one of the largest possible drivers of the difference between ASOS and ERA5.

Effects of Differential Heating by Land-Use types on flow and air temperature in an urban area (토지 피복별 차등 가열이 도시 지역의 흐름과 기온에 미치는 영향)

  • Park, Soo-Jin;Choi, So-Hee;Kang, Jung-Eun;Kim, Dong-Ju;Moon, Da-Som;Choi, Wonsik;Kim, Jae-Jin;Lee, Young-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, the effects of differential heating by land-use types on flow and air temperature at an Seoul Automated Synoptic Observing Systems (ASOS) located at Songwol-dong, Jongno-gu, Seoul was analyzed. For this, a computation fluid dynamics (CFD) model was coupled to the local data assimilation and prediction system (LDAPS) for reflecting the local meteorological characteristics at the boundaries of the CFD model domain. Time variation of temperatures on solid surfaces was calculated using observation data at El-Oued, Algeria of which latitude is similar to that of the target area. Considering land-use type and shadow, surface temperatures were prescribed in the LDAPS-CFD coupled model. The LDAPS overestimated wind speeds and underestimated air temperature compared to the observations. However, a coupled LDAPS-CFD model relatively well reproduced the observed wind speeds and air temperature, considering complicated flows and surface temperatures in the urban area. In the morning when the easterly was dominant around the target area, both the LDAPS and coupled LDAPS-CFD model underestimated the observed temperatures at the Seoul ASOS. This is because the Kyunghee Palace located at the upwind region was composed of green area and its surface temperature was relatively low. However, in the afternoon when the southeasterly was dominant, the LDAPS still underestimated, on the while, the coupled LDAPS-CFD model well reproduced the observed temperatures at the Seoul ASOS by considering the building-surface heating.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Analyzing fractal features in rainfall using high-resolution ASOS data (고해상도 ASOS 자료를 이용한 강우의 프랙털 특성 분석)

  • Kang, Hyoungseok;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.171-171
    • /
    • 2017
  • 강우의 시간분포는 다양한 시간규모에 걸쳐 프랙털 또는 멀티프랙털 특성을 가지고 있음이 알려졌다. 기존의 연구는 주로 시간단위 이상의 프랙털 특성에 관한 것이었다. 실제로 극한 홍수를 가져오는 집중호우는 짧은 시간 규모에서 발생함에도, 이것에 대해서는 관측 자료가 제한되어 극소수의 실험적 연구만 가능했다. 본 연구에서는 기상청에서 제공한 고해상도(1분 단위) ASOS(Automated Synoptic Observation System) 자료를 이용하여, 강우 사상 안에서의 프랙털 특성을 분석해보았다. 대부분의 사상에서 단일 멱함수보다는 2개의 멱함수로 나누어지는 것이 밝혀졌으며, 나뉘는 시간 규모(T*)는 $3{\times}10$ 분으로 파악되었다. 이 시간 규모는 한 단위의 집중호우를 가져올 수 있는 구름크기의 물리적 상한과 관련이 있는 것으로 보인다. T*보다 작은 시간 규모에서의 멱함수 지수는 그 이후의 값보다 대체로 작은 것으로 나타났다. 이는 호우가 집중되는 기간의 변동성이, 강수가 물리적 한계에 도달한 이후보다 훨씬 작기 때문으로 보인다. 구체적인 멱함수의 지수는 강수의 발생과정과도 관련이 있을 것으로 추정된다.

  • PDF

Urban Runoff According to Rainfall Observation Locations (강우 측정 지점에 따른 도시 유역 유출량 변화 분석)

  • Hyun, Jung Hoon;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.305-311
    • /
    • 2019
  • Recently, global climate change causes abnormal weather and disaster countermeasures do not provide sufficient defense and mitigation because they were established according to the historical climate condition. Repeated torrential rains, in particular, are causing damage even in the robust urban flood defense system. Therefore, in this study, the change of runoff considering the spatial distribution of rainfall and urban characteristics was analyzed. For rainfall concentrated in small catchment, rainfall in the watershed must be accurately measured. This study is based on the rainfall data observed with Automated Surface Observing System (ASOS) and Automatic Weather Stations (AWS) provided by the Seoul Meteorological Administration. Effluent from the pumping station was estimated using the EPA-SWMM model and compared and analyzed. Catchments with rainwater pumping station are small with large portion of impermeable areas. Thus, when the ASOS data where is located from from the chatchment, runoff is often calculated using rainfall data that is different from rainfall in the catchment. In this study, the difference between rainfall data observed in the AWS near the catchment and ASOS away from the catchment was calculated. It was found that accurate rainfall should be used to operate rainwater pumping stations or forecast urban flooding floods. In addition, the results of this study may be helpful for estimating design rainfall and runoff calculation.

Estimation of seasonal rainfall based on multiple regression analysis using ASOS data of Korea Meteorological Administration (기상청 ASOS 자료를 활용한 다중회귀분석 기반의 계절 강수량 예측)

  • Kim, Chul-gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Nam-won;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.310-310
    • /
    • 2019
  • 본 연구에서는 기상청 ASOS(종관기상관측장비) 자료와 통계적 기반의 다중회귀분석모형을 이용하여 경안천 유역에 대한 봄철 강수량(3~5월 누적강수량)의 예측성을 평가하였다. 예측대상기간은 2006~2018년이며 예측인자로서 전국 96개 지점의 ASOS 자료 중 35개 기상요소에 대한 월 자료를 활용하였다. 전망기간(1~12개월)에 따라 강수량 기준 최소 1개월에서 최대 24개월까지의 지체시간을 고려하여 1~24개월 선행 ASOS 기상자료와 강수량 사이의 상관성을 분석하였다. 예측대상년도를 기준으로 과거 40년간의 자료를 이용하여 상관성 분석을 수행하였으며, 상관성이 높은 상위 30개 기상인자를 조합하여 다중회귀분석모형의 예측인자(독립변수)로 활용하였다. 예측대상년도와 전망기간에 따라 최적의 예측인자를 조합하고, 교차검증을 통하여 각각 4,000개의 다중회귀모형을 도출하여 예측범위를 산출하였다. 다중회귀모형에 의한 예측범위를 분석한 결과, 2013년 자료까지는 예측범위가 관측값을 잘 포함하고 예측값의 평균이나 중간값이 관측값과 유사하게 나타난 반면, 2014년부터는 전망기간에 따라 관측값과 예측범위의 차이가 크게 나타나는 경우도 있었다. 예측치의 중간값을 기준으로 3분위(평년 이상, 평년 수준, 평년 이하) 적중률을 분석하면, 2006~2013년에 대해서는 58.3%인 반면, 2014~2018년에 대해서는 11.2% 수준으로 나타났다.

  • PDF

Generation and Verification on the Synthetic Precipitation/Temperature Data

  • Oh, Jai-Ho;Kang, Hyung-Jeon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.25-28
    • /
    • 2016
  • Recently, because of the weather forecasts through the low-resolution data has been limited, the demand of the high-resolution data is sharply increasing. Therefore, in this study, we restore the ultra-high resolution synthetic precipitation and temperature data for 2000-2014 due to small-scale topographic effect using the QPM (Quantitative Precipitation Model)/QTM (Quantitative Temperature Model). First, we reproduce the detailed precipitation and temperature data with 1km resolution using the distribution of Automatic Weather System (AWS) data and Automatic Synoptic Observation System (ASOS) data, which is about 10km resolution with irregular grid over South Korea. Also, we recover the precipitation and temperature data with 1km resolution using the MERRA reanalysis data over North Korea, because there are insufficient observation data. The precipitation and temperature from restored current climate reflect more detailed topographic effect than irregular AWS/ASOS data and MERRA reanalysis data over the Korean peninsula. Based on this analysis, more detailed prospect of regional climate is investigated.

  • PDF