• 제목/요약/키워드: ASOS

검색결과 160건 처리시간 0.674초

방재성능목표 설정의 AWS 자료 활용방안 (Efficient use of AWS data for determining the Disaster Prevention Performance Objectives)

  • 공소윤
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.221-221
    • /
    • 2022
  • 방재성능목표란 홍수, 호우 등으로부터 재해를 예방하기 위한 방재정책 등에 적용하기 위하여 처리 가능한 시간당 강우량 및 연속강우량의 목표로, 각 지자체별로 지역특성 및 경제여건 등을 고려하여 지역별 방재성능목표를 설정한다. 지역별 방재성능목표 기준을 설정하기 위해 전국을 168개 티센망으로 분류하고 69개 지점 확률강우량을 활용하여 지방자치단체별 확률강우량을 산정하고, 지방자치단체별 티센면적 비율을 감안하여 각 지자체별 방재성능목표 설정 기준을 마련한다. 이때 확률강우량 산정에 기상청에서 제공하는 종관기상관측(ASOS) 자료를 이용하는데, 종관기상관측(ASOS, Automated Synoptic Observing System)이란 종관규모의 날씨를 파악하기 위하여 정해진 시각에 모든 관측소에서 같은 시각에 실시하는 지상관측으로, 종관규모는 일기도에 표현되어 있는 고기압이나 저기압의 공간적 크기 및 수명을 말하며, 해당 지역의 현재 기상 실시간 제공 및 기상예보에 활용한다. 그러나 ASOS 자료로 산정한 확률강우량을 토대로 설정한 지역별 방재성능목표는 지배관측소개소 및 면적 비율에 따라 강우량이 실제 해당 지역에 내린 강우량에 비해 작거나 크게 산정되어 실제 강우량을 반영하지 못하는 문제가 발생한다. 이에 지진·태풍·홍수·가뭄 등 기상현상에 따른 자연재해를 막기 위해 실시하는 지상관측인 방재성능관측(AWS, Automatic Weather System)을 1997년부터 약 510여개 지점에 설치하여 기상관측자료를 구축하고 있으나, 관측자료가 30년 미만이므로 자료의 일관성 및 신뢰도 확보 등의 문제로 이용하고 있지 않다. 실제로 ASOS 관측소와 AWS 관측소의 시간 강우량 최댓값 차이가 큼에도 불구하고 행안부는 지역별 방재성능목표 수립을 위한 강우량 산정에서 AWS 관측소의 기록은 반영하지 않고 ASOS 관측소 기록만 적용하여 실제 해당 지역의 강우량을 반영하는 방재 대책을 수립하지 못하는 실정이다. 따라서 소규모 유역 및 재해영향평가 등의 경우 인근 지역에 AWS 관측소가 있을 경우, 해당지역의 기상 특성을 대변하는 자료로 보유관측년수가 30년 이상인 AWS 자료의 적극적인 활용이 필요할 것으로 판단된다.

  • PDF

서울 강우자료의 시·공간적 특성에 따른 유출분석 (Analysis of runoff according to the time and space characteristics of hourly rainfall data in Seoul)

  • 현정훈;박희성;정건희
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.216-216
    • /
    • 2019
  • 최근 이상 기후로 인하여 홍수피해가 많이 발생 하고 있다. 특히 도시유역의 도시화로 인해 불투수면적이 증가하여 내수 침수도 증가하였다. 이로 인하여 재산피해와 인명피해가 증가하면서 전 세계적으로 홍수 저감 연구가 진행 되고 있다. 강우의 시 공간적인 특성을 파악 하여 강우 사상을 정의 한다면 도시홍수 저감 에 있어 도움이 될 것이라 판단된다. 우리나라 서울 지역의 설계 강우량을 산정하기 위해 서울기상청에서 제공하고 있는 ASOS(Automated Surface Observing System) 를 사용해 왔다. 하지만 ASOS을 사용하게 되면 강수량의 공간 특성을 고려하기 어렵지만 AWS(Automatic Weather Stations) 는 세밀한 관측망을 가지고 있어 공간적 특성을 고려할 수 있다. 본 연구에서는 서울 기상청에서 제공하고 있는 강우 자료의 20개년 연속된 강우자료를 통해 강우자료를 구축 하였다. 서울지역의 유역을 선정하였으며 도시유역 강우-유출 해석에 많이 사용되는 EPA-SWMM 모형에 ASOS 와 AWS 강우자료를 적용하여 유출 분석을 하였다. 이러한 자료를 바탕으로 공간 특성 분석을 실시하여 더욱 세밀한 설계 강우량 산정에 도움을 있을 것으로 판단된다.

  • PDF

강우 측정 지점에 따른 도시 유역 유출량 변화 분석 (Urban Runoff According to Rainfall Observation Locations)

  • 현정훈;정건희
    • 한국습지학회지
    • /
    • 제21권4호
    • /
    • pp.305-311
    • /
    • 2019
  • 최근 전 지구적인 기후변화는 예측이 어려운 이상 기후를 발생시키며 기존의 기후에 맞추어 수립된 재해 대응 방안으로는 충분한 방어 및 완화조치가 이루어지지 않고 있다. 특히, 반복되는 집중호우는 견고하게 구성되었던 도심지 홍수방어 체계에서도 피해를 발생시키고 있다. 따라서 본 연구에서는 강우의 공간적인 분포와 도시 특성을 고려하여 유출량의 변화를 분석하였으며, 이는 특정 지역에 집중되는 강우 양상과 불투수층이 많은 도시의 유출특성에 대한 연구이다. 서울 지역에서 한 곳에 집중되는 강우의 경우, 유역의 유입량 및 유출량 계산이 정확하게 이뤄지기 위해서는 유역에 내린 강우를 정확하게 측정해야 한다. 본 연구는 서울 기상청에서 제공 하고 있는 종관기상관측장비(Automated Surface Observing System, ASOS)와 방재 기상관측장비(Automatic Weather Stations, AWS)로 관측된 강우자료를 이용하여 서울 용답 빗물펌프장 유역과 가산1빗물 펌프장 유역에서의 유출량을 EPA-SWMM 모형을 사용하여 산정하고, 비교·분석을 하였다. 빗물펌프장 유역은 불투수 면적이 대부분인 작은 도시 유역이므로, ASOS 자료를 사용할 경우에는 유역과 강우 관측 지점의 거리가 멀어, 유역 내 내린 강우와 상이한 강우 자료를 이용하여 유출량을 계산하게 되는 경우가 많다. 본 연구에서는 유역 근처에 위치한 AWS에서 관측한 강우자료와 유역에서 멀리 떨어진 ASOS에서 관측한 강우자료의 차이를 분석하고, 이에 따라 달라지는 유출량을 계산하였다. 이를 통해 정확한 강우량을 사용하여 빗물펌프장을 운영하거나 도시 홍수 홍수 예보 등을 수행해야 한다는 것을 알 수 있었다. 또한, 본 연구의 결과는 설계강우량 산정 및 유출량 계산에 도움이 될 수 있을 것으로 판단된다.

Landsat 8 OLI/TIRS Science Product를 활용한 지표면 온도 유용성 평가 (Availability of Land Surface Temperature Using Landsat 8 OLI/TIRS Science Products)

  • 박성욱;김민식
    • 대한원격탐사학회지
    • /
    • 제37권3호
    • /
    • pp.463-473
    • /
    • 2021
  • 본 연구에서는 최근 USGS에서 공개한 Landsat 8 Collection 2 Level 2 Science Product (L2SP) 위성 영상을 이용하여 국내 지표면 온도를 산출하였고, 기존 Landsat 8 Collection 1 Level 1 Terrain Precision (L1TP) 위성 영상을 활용하여 산출한 국내 지표면 온도와의 비교와 기상청 종관기상관측자료(Automated Synoptic Observing System, ASOS)와의 검증을 통해 L2SP 기반 지표면 온도 자료의 국내 영역에 대한 적합성을 평가하고자 하였다. L2SP는 연구 및 분석에 용이하도록 Landsat 8 Collection 2 Level 1 데이터를 기반으로 만든 Level 2 자료로, 기존의 계산식을 통해 산출해야 하는 지표면 반사도 자료와 지표면 온도 자료를 계산 처리 없이 바로 사용할 수 있다는 장점이 있다. 2018년부터 2020년까지 3년간의 Landsat 8 지표면 온도 산출물과 관측소 지점 8개소 주변 3×3 격자 영역과의 비교한 결과, 8개 관측소 기준 L2SP 지표면 온도와 L1TP 지표면 온도의 평균 피어슨 상관계수(Pearson correlation coefficient)는 각각 0.971, 0.964로 두 자료 모두 상당히 강한 양의 상관관계를 보여주었으며, RMSE (Root Mean Square Error)의 경우 각각 4.029℃, 5.247℃로 L2SP 지표면 온도 자료가 더 낮은 RMSE를 보여주는 것을 확인 하였다. 이는 관측소 위치별로 값에 차이가 생길 수 있지만 평균적인 지표 결과를 보았을 때, L2SP 지표면 온도 자료가 L1TP를 통해 산출되는 지표면 온도 자료와 비교했을 때 준수하거나 그 이상의 정확도를 보여주어 국내 지표면 온도 산출 연구에 적합하다고 판단된다. 따라서 향후 계절적 요인과 고도에 따른 온도 차이 등의 환경 및 지형적인 요인도 고려를 하거나, 본 연구 과정에서 발생한 Science Product의 고정적인 영상 품질 문제 등이 개선된다면 보다 더 안정적이고 정확도 높은 지표면 온도 참조 자료로써의 유용성이 클 것이라 판단된다.

전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가 (Evaluation of the Air Temperature and Wind Observation Environments Around Automated Synoptic Observing Systems in Summer Using a CFD Model)

  • 강정은;노주환;김재진
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.471-484
    • /
    • 2022
  • 본 연구는 전산유체역학 모델을 이용하여 기상청에서 운용하는 종관기상관측소(automated synoptic observing system, ASOS) 10개 지점을 대상으로 ASOS 주변 지형과 건물이 기온과 바람(풍속, 풍향) 관측 환경에 미치는 영향을 분석하였다. ASOS에서 최근 10년간 8월의 관측 자료를 기반으로 전산유체역학(computational fluid dynamics, CFD) 모델의 초기·경계 자료를 구축하였다. 실제 토지 피복을 고려한 경우와 모든 피복을 초지로 가정한 경우에 대해, 관측 고도에서 초기 기온 대비 기온 변화율을 비교함으로써 기온 관측 환경을 분석하였다. 기온 관측 환경은 관측 지점 주위의 토지 피복에 의한 영향을 많이 받았다. ASOS 주변에 지표면 온도가 높은 건물과 도로가 밀집한 경우에 기온 변화율이 크게 나타났다. 반면, 모든 토지 피복을 초지로 가정한 경우에는 초기 기온 대비 기온 변화율이 작았다. 실제 토지 피복을 고려하여 관측 고도의 유입류 대비 풍속 변화율과 풍향 변화를 비교함으로써 풍속과 풍향 관측 환경을 분석하였다. 풍속과 풍향은 ASOS 주변에 관측 고도보다 높거나 비슷한 높이의 지형과 건물 영향을 크게 받았으며, 원거리에 위치한 장애물에 의한 영향도 나타났다. 본 연구 결과는 종관기상관측소의 이전과 신설 단계에서 관측 환경 평가에 활용될 것이다.

산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증 (Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation)

  • 민성현;윤석희;원명수;천정화;장근창
    • 한국농림기상학회지
    • /
    • 제24권4호
    • /
    • pp.244-255
    • /
    • 2022
  • 본 연구는 국내의 ASOS 및 AWS와 AMOS 관측 값을 사용하여 1km 고해상도의 산악기상 격자 값을 추정하고 평가하였다. 해발고도 200m이상을 산악지역으로 정의하고 ASOS, AWS, AMOS 기상관측소를 산악기상이 반영된 기상데이터와 산악기상이 반영되지 않는 기상데이터로 나누었다. 2013년에서 2020년까지 산악기상 데이터를 적용하고 편의보정기법(bias correction method)방법을 통하여 산악기상 적용에 따른 보정계수를 산출하고 적용하여 보정계수 및 산악기상 데이터가 반영된 고해상도 산악기상기온 격자 데이터를 생성하였다. 추정된 산악기상기온 격자데이터는 검증지점의 기상 기온 실측 값과 비교하여 평가하였다. 산악기상 데이터 반영 및 보정계수가 반영된 산악기상 고해상도 격자 기온은 산악기상이 반영되지 않는 격자기온보다 RMSE가 34%(평균기온), 50%(최저기온), 31%(최고기온)가 감소하였다. 이는 산악기상 정보기반과 산악기상 보정계수를 적용이 국내 산악기상고해상도 격자 생성에 있어서 정확도를 크게 개선시킬 수 있음을 시사하였다. 이러한 1km 고해상도의 기온 격자데이터는 추후 기후변화에 대한 산림생태계 변화 및 산림재해 모델의 검증을 위한 데이터로 매우 유용하게 활용될 수 있을 것이라 사료된다.

GPM 위성 강우자료의 검증과 지상관측 자료를 통한 강우 보정 기법 (Assessment and merging technique for GPM satellite precipitation product using ground based measurement)

  • 백종진;박종민;김기영;최민하
    • 한국수자원학회논문집
    • /
    • 제51권2호
    • /
    • pp.131-140
    • /
    • 2018
  • 강우는 물순환 시스템을 이해를 증가 시킬 뿐만 아니라, 효율적인 수자원 확보 및 관리에 있어서 가장 핵심적인 인자이다. 본 연구는 2015년을 대상으로 한반도에서의 92개의 ASOS 지점자료와 최근에 발사된 GPM 위성강우 자료의 비교를 통하여 활용가능성을 평가하였다. 또한 지점 자료의 장점과 인공위성 자료의 장점을 융합함으로써 보다 개선된 강우자료를 산출하기 위해 3가지의 상세화 방법(Geographical Differential Analysis, Geographical Ratio Analysis, Conditional Merging)들을 적용하였다. 이 연구에서 도출된 결과는 다음과 같다. 1) ASOS 자료와의 검증을 통해 GPM 강우자료가 약간 과대산정되는 편향을 가지고 있는 것을 확인하였으며, 특히 여름 기간에 오차가 높게 발생하는 것으로 나타났다. 2) Jackknife 방법을 통하여 각 합성방법에 대해서 검증하였을 때, 공간해상도가 높아짐에 따라서 오차가 줄어드는 것을 확인하였으며, 상세화 방법 중 conditional merging 방법이 가장 좋은 성능을 나타내었다.

집중호우의 시·공간적 특성과 유역특성을 고려한 강우분석 연구 (Rainfall analysis considering watershed characteristics and temporal-spatial characteristics of heavy rainfall)

  • 김민석;최지혁;문영일
    • 한국수자원학회논문집
    • /
    • 제51권8호
    • /
    • pp.739-745
    • /
    • 2018
  • 최근 집중호우의 발생빈도가 증가하고 있으며, 이를 고려한 강우분석을 실시하여야 한다. 현재 수문설계를 위한 강우분석은 한반도 조밀도 36 km인 기상청 관할 종관기상관측지점(Automated Surface Observing System, ASOS)의 시 단위 강우를 이용하고 있다. 이로 인해 같은 강우지점의 티센망에 포함되는 중소규모 유역은 동일한 확률강우량과 강우시간분포로 분석하게 됨으로 유역특성을 고려하지 못하는 문제가 발생한다. 또한, 10~20 km 범위 내에서 발생하는 집중호우의 시 공간적 변화를 고려하지 못하는 문제점이 발생한다. 따라서 본 연구에서는 종관기상관측지점에 비해 상대적으로 조밀도가 우수한 방재기상관측지점(Automatic Weather System, AWS)의 분 단위 강우자료를 이용하여 집중호우를 고려한 확률강우량을 산정하였다. 또한, 유역에 적합한 Huff의 4분위 방법 산정을 위해 Case별 시간분포 산정과 유출분석을 실시하였다. 이는 집중호우와 유역특성을 반영한 설계수문량 산정에 크게 기여할 것으로 판단된다.

기온 자료와 에너지수지 방법을 이용한 지역 기준 증발산량 상세화 (Detailing of regional evapotranspiration using temperature data and energy balance method)

  • 강신욱;유완식;김경필;이용신
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.118-118
    • /
    • 2023
  • 물순환 과정의 구성요소 중 하나인 증발산(증발과 증산)은 각종 수자원시설물의 운영관리, 수자원계획 수립, 농업용 시설의 개발 및 운영관리 등에 필요한 매우 중요한 요소이다. 한편, 기후변화 등으로 '14~'19년 장기간 가뭄, '17년 가뭄상황에서도 태풍 '차바'에 의한 국지적 홍수, '20년 역대 최장기간 장마에 의한 대규모 홍수, '22년 태풍 '힌남노' 이후 남부지역 극심한 가뭄 등 가뭄과 홍수가 반복되어 물관리 여건이 매우 어려운 상황이다. 이러한 홍수/가뭄에 효과적으로 대응하기 위해 강우-유출 모형을 사용한다. 신뢰적인 예측결과를 얻기 위해서는 상세하고 정밀한 증발산량 추정이 필요하다. Penman-Monteith(PM) 기법으로 기준 증발산량을 산정하기 위해서는 최고·최저기온, 이슬점온도, 풍속, 일조시간 등의 기상자료가 필요하다. 이러한 자료는 전국 95개 ASOS 지점에만 얻을 수 있다. 계산된 95개 지점의 기준 증발산량은 티센망 등 방법으로 공간평균하여 활용한다. 95개 지점 자료만으로는 지역적 기상 특성을 반영하여 기준 증발산량을 산정하는데 한계가 있으며, 결국 강우-유출분석의 신뢰도 저하로 귀결된다. 본 연구는 기상청 ASOS 지점 외 AWS 590개 지점을 추가하여 기준 증발산량을 산정하여 공간적으로 상세화하였다. ASOS 지점들에 대해 PM 기법과 Hargreaves(HS) 기법으로 22년간의 일단위 기준 증발산량을 각각 계산하였다. 이들의 상관계수는 평균 0.85로 매우 높아, HS 기법으로 산정된 AWS 지점 결과의 추가사용이 적정하였다. 기온만을 사용하는 HS 기법, PM과 HS의 상관성 및 풍속을 반영한 2가지 보정 HS 기법으로 기준 증발산량을 계산하여 비교·분석하였다. 보정된 HS의 결과가 기존 HS 기법에 비해 오차가 적고, 자료의 편향성이 줄어드는 등 더 좋은 결과를 나타내었다. 따라서, 각종 수문분석에 보정 HS 기법을 AWS 지점에 확대·적용하고, ASOS 관측소의 PM 기법과 병행해 상세화하여 활용하면 수문분석의 신뢰성을 더욱 높일 수 있을 것이다.

  • PDF

분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측 (High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS)

  • 김소현;김보미;이가림;이예원;노성진
    • 한국수자원학회논문집
    • /
    • 제57권5호
    • /
    • pp.333-346
    • /
    • 2024
  • 수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.