• Title/Summary/Keyword: ASOS

검색결과 160건 처리시간 0.035초

Regional drought characteristics analysis of natural drought index (자연가뭄지수의 지역별 가뭄특성분석)

  • Kim, Seon-Ho;So, Jae-Min;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.149-149
    • /
    • 2016
  • 최근 전 세계적으로 이상기후가 발생하고 있으며, 국내에서도 과거에 경험하지 못했던 자연재해가 빈번하게 발생하고 있는 추세이다. 가뭄은 홍수와 더불어 그 피해가 가장 큰 자연재해 중 하나이며, 장주기적이고 광역적으로 발생함에 따라 구체적인 발생시기, 장소, 원인을 파악하는 것이 어렵다. 그동안 국내에서는 가뭄극복을 위해 다양한 대책을 마련해 왔음에도 불구하고 가뭄피해는 지속적으로 증가하고 있다. 실례로 2014~2015 가뭄으로 소양강 댐은 역대 최저수위를 기록하였으며, 일부 지역에서는 제한급수, 농업용수 부족 피해가 발생한 바 있다. 이처럼 가뭄으로 인한 피해는 기후 변화의 영향으로 더욱 빈번할 것이라는 보고가 있어 가뭄해석을 위한 지속적인 노력이 필요하다. 가뭄해석에는 일반적으로 가뭄의 시작, 끝, 지속기간, 발생간격, 누적심도 등을 사용하며, 이를 가뭄특성인자라고 한다. 따라서 본 연구에서는 인위적인 시설물의 영향을 배제한 자연가뭄지수(Natural Drought Index, NDI)를 이용하여 국내 5개 행정구역의 지역별 가뭄특성을 분석하였다. 자연가뭄지수의 산정을 위해 입력자료는 3개월 누적강수량, 누적유출량, 평균토양수분량을 사용하였으며, 강수량은 국내 ASOS 59개 지점 자료, 유출량 및 토양수분량은 지표수문해석모형의 결과를 이용하였다. 가뭄특성 분석기간은 1977~2012년이며, 가뭄특성인자는 가뭄의 시작, 끝, 지속기간, 발생간격을 활용하였다. 과거 가뭄피해사례와, SPI, SRI, SSI 및 NDI의 가뭄특성인자를 비교하였으며, 정량적 비교를 위해 평균오차, 평균절대오차를 사용하였다. 가뭄특성인자 분석 결과 NDI는 가뭄의 시작과 끝을 가장 정확하게 반영하였다. 가뭄의 지속기간은 NDI, 발생간격은 NDI와 SPI가 정확한 것으로 나타났다. 자연가뭄지수는 단일변량 가뭄지수에 비해 지역적 가뭄특성을 정확하게 재현한다는 점에서 추후 가뭄감시에 유용하게 활용될 것으로 판단된다.

  • PDF

Development of Real-Time Drought Outlook System in Chungcheongnam-do (충청남도 실시간 가뭄 전망 시스템 개발)

  • Gwon, Yong Hyeon;Kang, Tae Hoon;Jung, Ui Seok;Lee, Byong Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.406-406
    • /
    • 2019
  • 최근 전세계적으로 기후변화로 인해 가뭄의 발생 가능성이 높아지고 있으며 그에 대한 인적피해와 경제적 손실로 인한 피해액은 증가하는 추세이다. 특히, 국내의 충남지역은 최근 강수량이 평년대비 75% 수준으로 감소하고 있으며, 지속적인 가뭄이 발생하여 용수 확보에 어려움을 겪고 있다. 또한, 2015년에는 강수량 감소로 인해 보령댐을 상수원으로 사용하고 있는 충남 서북부지역 8개 시군에 용수 공급에 큰 차질이 있었다. 지속적인 가뭄상황이 반복되면서 정부 지자체 공공기관 등에서는 가뭄의 규모 및 단계에 따른 공간적 범위를 표출하는 가뭄 모니터링과 가뭄 전망 시스템을 구축하여 운영하고 있다. 다만 하천과 저수지를 연계하여 지역적 특성을 고려한 중규모 지역에 대한 가뭄전망 시스템은 부족한 실정이다. 이를 해결하고자 하천과 저수지에 대한 실시간 유출 및 물수지 분석기술을 이용하여 미래 무강수 조건에서 일단위 공급가능량, 공급량, 부족량, 잉여공급량, 가뭄위험등급을 전망하는 DOS(Drought Outlook System)을 개발하였다. 본 시스템은 지속적인 가뭄이 발생하고 있는 충남 서북부지역 8개 시군에 대한 436개의 하천유역을 구성하고 129개의 저수지를 대상으로 구축하였다. 기상자료는 기상청 ASOS 일 관측자료를 실시간으로 수집하여 티센법 기반의 436개 유역평균 일단위 강우량과 잠재증발산량을 산정하고 미래 90일에 대해서는 무강우와 평균 잠재증발산량을 적용하였다. TANK 모델과 물수지분석을 통해 과거 400일과 미래 90일에 대한 일단위 하천유량, 저수량, 부족량, 가뭄위험등급 등을 산정하여 매일 14시에 GIS기반 웹시스템에 표출된다. 본 시스템을 통해 하천유역 및 저수지에 대한 미래의 물공급 변화 및 가뭄위험 변화를 판단하고 추정할 수 있으며 추후 타지역 확장을 통해 전국에 대한 가뭄위험을 전망하고 가뭄대책수립에 기여 할 수 있을 것으로 판단된다.

  • PDF

Analysis of Traffic Characteristics of General National Roads by Snowfall in Gangwon-do (강원도에서 적설에 의한 일반국도 교통 특성 분석)

  • Jo, Eun Su;Kwon, Tae-Yong;Kim, Hyunuk;Kim, Kyu Rang;Kim, Seung Bum
    • Atmosphere
    • /
    • 제31권2호
    • /
    • pp.157-170
    • /
    • 2021
  • To investigate the effect of snowfall on the traffic of general roads in Gangwon-do, case analysis was performed in Gangneung, Pyeongchang, and Chuncheon using ASOS (Automated Synoptic Observing System) snowfall data and VDS (Vehicle Detector System) traffic data. First, we analyzed how much the traffic volume and speed decrease in snowfall cases on regional roads compared to non-snow cases, and the characteristics of monthly reduction due to snowfall were investigated. In addition, Pearson correlation analysis and regression analysis were performed to quantitatively grasp the effect of snowfall on traffic volume and speed, and sensitivity tests for snowfall intensity and cumulative snowfall were performed. The results showed that the amount of snowfall caused decrease both in the traffic volume and speed from usual (non-snowfall) condition. However, the trend was different by region: The decrease rate in traffic volume was in the order of Gangneung (17~22%), Chuncheon (14~17%), and Pyeongchang (11~14%). The decrease rate in traffic speed was in the order of Chuncheon (9~10%), Gangneung (8~9%), Pyeongchang (5~6%). No significant results were found in the monthly decrease rate analysis. In all regions, traffic volume and speed showed a negative correlation with snowfall. It was confirmed that the greater the amount of traffic entering the road, the greater the slope of the trend line indicating the change in snowfall due to the traffic volume. As a result of the sensitivity test for snowfall intensity and cumulative snowfall, the snowfall information at intervals of 6-hours was the most significant.

Study on the Methodology for Generating Future Precipitation Data by the Rural Water District Using Grid-Based National Standard Scenario (격자단위 국가 표준 시나리오를 적용한 농촌용수구역단위 자료변환 방법 비교 연구)

  • Kim, Siho;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제65권3호
    • /
    • pp.69-82
    • /
    • 2023
  • Representative meteorological data of the rural water district, which is the spatial unit of the study, was produced using the grid-based national standard RCP scenario rainfall data provided by the Korea Meteorological Administration. The retrospective reproducibility of the climate model scenario data was analyzed, and the change in climate characteristics in the water district unit for the future period was presented. Finally the data characteristics and differences of each meteorological element according to various spatial resolution conversion and post-processing methods were examined. As a main result, overall, the distribution of average precipitation and R95p of the grid data, has reasonable reproducibility compared to the ASOS observation, but the maximum daily rainfall tends to be distributed low nationwide. The number of rainfall days tends to be higher than the station-based observation, and this is because the grid data is generally calculated using the area average concept of representative rainfall data for each grid. In addition, in the case of coastal regions, there is a problem that administrative districts of islands and rural water districts do not match. and In the case of water districts that include mountainous areas, such as Jeju, there was a large difference in the results depending on whether or not high rainfall in the mountainous areas was reflected. The results of this study are expected to be used as foundation for selecting data processing methods when constructing future meteorological data for rural water districts for future agricutural water management plans and climate change vulnerability assessments.

Long term discharge simulation using an Long Short-Term Memory(LSTM) and Multi Layer Perceptron(MLP) artificial neural networks: Forecasting on Oshipcheon watershed in Samcheok (장단기 메모리(LSTM) 및 다층퍼셉트론(MLP) 인공신경망 앙상블을 이용한 장기 강우유출모의: 삼척 오십천 유역을 대상으로)

  • Sung Wook An;Byng Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.206-206
    • /
    • 2023
  • 지구온난화로 인한 기후변화에 따라 평균강수량과 증발량이 증가하며 강우지역 집중화와 강우강도가 높아질 가능성이 크다. 우리나라의 경우 협소한 국토면적과 높은 인구밀도로 기후변동의 영향이 크기 때문에 한반도에 적합한 유역규모의 수자원 예측과 대응방안을 마련해야 한다. 이를 위한 수자원 관리를 위해서는 유역에서 강수량, 유출량, 증발량 등의 장기적인 자료가 필요하며 경험식, 물리적 강우-유출 모형 등이 사용되었고, 최근들어 연구의 확장성과 비 선형성 등을 고려하기 위해 딥러닝등 인공지능 기술들이 접목되고 있다. 본 연구에서는 ASOS(동해, 태백)와 AWS(삼척, 신기, 도계) 5곳의 관측소에서 2011년~2020년까지의 일 단위 기상관측자료를 수집하고 WAMIS에서 같은 기간의 오십천 하구 일 유출량 자료를 수집 후 5개 관측소를 기준으로Thiessen 면적비를 적용해 기상자료를 구축했으며 Angstrom & Hargreaves 공식으로 잠재증발산량 산정해 3개의 모델에 각각 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온), 일 강수량과 잠재증발산량, 일 강수량 - 잠재증발산량을 학습 후 관측 유출량과 비교결과 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온)로 학습한 모델성능이 가장 높아 최적 모델로 선정했으며 일, 월, 연 관측유출량 시계열과 비교했다. 또한 같은 학습자료를 사용해 다층 퍼셉트론(Multi Layer Perceptron, MLP) 앙상블 모델을 구축하여 수자원 분야에서의 인공지능 활용성을 평가했다.

  • PDF

Estimation of future climate change factor based on CMIP6 data (CMIP6 자료 기반 미래 기후변화 할증률 산정)

  • Beak, Dojin;Kim, Jongho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.308-308
    • /
    • 2023
  • 자연재해대책법 제 16조 6에 따라 기후변화로 인한 방재성능목표의 영향을 고려하기 위해 방재성능가이드라인을 설정하여 운영하고 있다. 2017년 공표된 기후변화를 고려한 방재성능목표 강우량의 단기 할증률은 CMIP5 자료를 기반으로 기본 5%, 관심 8%, 주의 10%의 할증률로 구분되어 적용되고 있다. 그러나, 미래 기후변화 시나리오에 따르면 확률강우량이 늘어나는 지역도 있지만, 감소될 것으로 예상되는 지역도 존재한다. 따라서, 모든 지역을 3개의 구간으로 나누어 증가 할증률을 적용하는 것에 대한 검토가 필요하다. 본 연구에서는 CMIP6 기후변화 자료를 시단위로 다운스케일링한 시계열을 이용하여 미래 기후변화로 인한 방재성능목표의 할증률을 산정하고, 각 할증률에 기반한 구간을 상세화하고자 한다. 구체적으로, 현재 기상청에서 제공하는 일단위 기후변화 데이터베이스와, CMIP6에서 제공하는 일단위 기후변화 자료를 구축하고, 분석하였다. 이후 구축된 일단위 자료를 시단위 자료로 Downscaling한 후, 각 이산화탄소 배출 시나리오인 SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5에 대해 앙상블 시계열을 생성하고, 다양한 기후변화의 불확실성을 적절하게 정량화 할 예정이다. 그중에서 방재성능목표와 가장 밀접하다고 생각되는 변수들(연강우량, 8월강우량, 연최대강우량, 30년빈도 확률강우량 등)을 CCF(Cross Correlation Function), ACC(Auto Correlation Function)방법 등을 통해 분석하여 최적의 변수들을 찾고, 그 값들의 앙상블 평균을 통해 안정된 방재성능목표 기후변화 할증률 값을 산정할 예정이다. 169개 지역의 시·군 단위의 티센망과, 238개 지역의 시·군·구 단위의 티센망을 구축하고, 기상청 ASOS(Automated Synoptic Observing System)의 69개 기상관측소 강우관측자료와 AWS(Automatic Weather System)의 419개 기상관측소를 활용하여 지역별 미래 기후변화를 고려한 비선형적 할증률를 제시할 것이다.

  • PDF

Verifying Applicability of Multi-Timescale Rainfall Data from CHIRPS Satellite (다중시간 규모의 CHIRPS 위성 강우자료에 대한 활용성 검증)

  • Minseok Kim;Kyunghun Kim;Seong Cheol Shin;Soojun Kim;Hung Soo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.192-192
    • /
    • 2023
  • 우량계는 강우 자료를 수집하는 전통적인 방법 중 하나로, 연속적이고 직접적인 설치가 가능하다. 하지만 지형적 특성에 영향을 받아 강우량을 과소 측정하는 문제점이 있다. 이러한 문제를 해결하기 위해 국지적인 호우, 강우 이동 및 강우 상황 등을 파악할 수 있는 레이더를 이용한 강우 측정이 활용된다. 하지만 레이더 기반 측정 또한 우량계와 마찬가지로 과소 측정하는 문제점이 있다. 측정 한계를 극복하기 위해 최근에는 위성 기반 강우 자료를 사용하고 있다. 위성 기반의 강우 자료는 측정이 어려운 장소에서도 강우량의 수집이 가능하며, 지표 변화를 관측하여 강우 측정의 정확도를 높일 수 있다. 고화질 위성 자료인 CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) 자료는 미국 국제개발처, 항공우주국, 해양 대기청의 지원으로 1980년부터 현재까지 전 지구적 (50°S-50°N, 180°E-180°W) 0.05° × 0.05°의 해상도를 가진 강우량 데이터를 개발하였다. 본 연구에서는 전국 54개 ASOS (Automated Synpotic Observing System)에서 관측한 월 단위 및 일 단위 강우 자료를 기준으로 CHIRPS 강우 자료를 비교하였다. 또한, 다른 위성 강우 자료들 (APHRODITE (Asian Precipitation Highly Resolved Observation Data Integration Towards Evaluation), CMORPH (Climate Prediction Cneter morphing method))과도 비교하여 국내 적용성을 확인하였다. 강우 자료의 정확도를 비교하기 위해서 Box-plot, RMSE (Root Mean Squared Error) 등을 산정하였으며, 강우 발생 일을 비교하고자 오차 행렬을 활용하였다. 비교 결과를 통해서 CHIRPS 강우 자료가 다른 위성 강우 자료들에 비해서 국내 적용성이 높은 것을 확인할 수 있었으며, 추후 국내 수문학 연구에서 기초자료로서 활용될 수 있을 것으로 판단된다.

  • PDF

Development of long-term daily high-resolution gridded meteorological data based on deep learning (딥러닝에 기반한 우리나라 장기간 일 단위 고해상도 격자형 기상자료 생산)

  • Yookyung Jeong;Kyuhyun Byu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.198-198
    • /
    • 2023
  • 유역 내 수자원 계획을 효율적으로 수립하기 위해서는 장기간에 걸친 수문 모델링 뿐만 아니라 미래 기후 시나리오에 따른 수문학적 기후변화 영향 분석도 중요하다. 이를 위해서는 관측 값에 기반한 고품질 및 고해상도 격자형 기상자료 생산이 필수적이다. 하지만, 우리나라는 종관기상관측시스템(ASOS)과 방재기상관측시스템(AWS)으로 이루어진 고밀도 관측 네트워크가 2000년 이후부터 이용 가능했기에 장기간 격자형 기상자료가 부족하다. 이를 보완하고자 본 연구는 가정적인 상황에 기반하여 만약 2000년 이전에도 현재와 동일한 고밀도 관측 네트워크가 존재했다면 산출 가능했을 장기간 일 단위 고해상도 격자형 기상자료를 생산하는 것을 목표로 한다. 구체적으로, 2000년을 기준으로 최근과 과거 기간의 격자형 기상자료를 딥러닝 알고리즘으로 모델링하여 과거 기간을 대상으로 기상자료(일 단위 기온, 강수량)의 공간적 변동성 및 특성을 재구성한다. 격자형 기상자료의 생산을 위해 우리나라의 고도에 기반하여 기상 인자들의 영향을 정량화 하는 보간법인 K-PRISM을 적용하여 고밀도 및 저밀도 관측 네트워크로 두 가지 격자형 기상자료를 생산한다. 생산한 격자형 기상자료 중 저밀도 관측 네트워크의 자료를 입력 자료로, 고밀도 관측 네트워크의 자료를 출력 자료로 선정하여 각 격자점에 대해 Long-Short Term Memory(LSTM) 알고리즘을 개발한다. 이 때, 멀티 그래픽 처리장치(GPU)에 기반한 병렬 처리를 통해 비용 효율적인 계산이 가능하도록 한다. 최종적으로 1973년부터 1999년까지의 저밀도 관측 네트워크의 격자형 기상자료를 입력 자료로 하여 해당 기간에 대한 고밀도 관측 네트워크의 격자형 기상자료를 생산한다. 개발된 대부분의 예측 모델 결과가 0.9 이상의 NSE 값을 나타낸다. 따라서, 본 연구에서 개발된 모델은 고품질의 장기간 기상자료를 효율적으로 정확도 높게 산출하며, 이는 향후 장기간 기후 추세 및 변동 분석에 중요 자료로 활용 가능하다.

  • PDF

Applicability of Artificial Intelligence Techniques to Forecast Rainfall and Flood Damage in Future (미래 강우량 및 홍수피해 전망을 위한 인공지능 기법의 적용성 검토)

  • Lee, Hoyong;Kim, Jongsung;Seo, Jaeseung;Kim, Sameun;Kim, Soojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.184-184
    • /
    • 2021
  • 2020년의 경우 대기 상층 제트기류가 크게 강화됨에 따라 작은 규모의 저기압의 발달이 평년보다 두 배 이상 증가하였고, 그로 인해 장마가 최대 54일가량 지속되며 1조 371억 원 가량의 대규모 침수피해가 발생하였다. 이와 같이 최근 기후변화로 인한 이상 기후가 빈번하게 발생하고 있으며, 그로 인해 홍수, 태풍과 같은 재난의 강도 및 파급되는 재산피해가 점차 증가하고 있는 추세이다. 따라서 본 연구에서는 기후변화를 고려하여 향후 30년간 강우량 변화 추이를 파악하고, 이에 따라 파급되는 재난피해 규모의 증가 추세를 확인하고자 하였다. 기후변화 시나리오는 IPCC AR6(Intergovernmental Panel on Climate Change - Sixth Assessment Report)에서 제시하고 있는 시나리오 중 극한 시나리오인 SSP5-8.5와 안정화 시나리오인 SSP2-4.5 시나리오를 활용하고자 하였다. GCM(General Circulation Model) 자료는 전 지구적 모형으로 공간적 해상도가 낮은 문제가 있기 때문에, 국내 적용을 위해서는 축소기법을 적용해야 한다. 본 연구에서는 공간적 축소를 위해 통계학적 기법 중 인공지능 기법을 적용하고 Reference data와 종관기상관측(ASOS)의 실측 강우 자료(1905 ~ 2014년)를 통해 학습된 모형의 정확도 검증을 수행하였다. 또한 연 강수량과 연도별 홍수피해의 규모 및 빈도를 확인하여 연도별 강수량 증가에 따른 피해 규모의 증가를 관계식을 도출하였다. 이후 최종적인 축소기법으로 모형을 통해 향후 2050년까지 부산광역시의 예측 강우량을 전망하여 연 강수량의 증가량과 피해 규모의 증가량을 전망해보고자 하였다. 본 연구 결과는 부산광역시의 예방단계 재난관리의 일환으로 적응형 기후변화 대책 수립에 기초 자료로써 활용될 수 있을 것이다.

  • PDF

Forecasting reference evapotranspiration using statistically based long-term temperature prediction information (통계적 기반의 장기 기온예측정보를 이용한 기준증발산량 전망)

  • Kim, Chul-Gyum;Lee, Jeongwoo;Lee, Jeong Eun;Kim, Hyeonjun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.390-390
    • /
    • 2021
  • 본 연구에서는 통계적 방법에 의해 예측된 미래기간의 기온정보와 기온기반의 기준증발산량 산정방법을 연계하여 한강권역을 대상으로 최대 12개월의 미래기간에 대한 기준증발산량을 전망하였다. 기온정보는 Kim et al. (2020)의 연구와 같이 글로벌 기후지수와의 원격상관성을 기반으로 개발된 다중회귀모형을 이용하여 미래기간(예측시점 기준 1~12개월)에 대해 월 평균기온을 예측하고 이를 상세화하여 한강권역 내 주요 ASOS 지점별로 최고/최저기온을 도출하였다. 기준증발산량은 Hamon 방법(Hamon, 1960, 1963)을 기반으로 각 지점별로 상세화된 최고/최저기온을 이용하여 동일한 미래기간(1~12개월)에 대해 산정하였다. 한강권역 전체에 대해 2015년 1월~2020년 12월의 월별 평균기온과 각 지점별 산정한 기준증발산량을 활용하여 기온 및 기준증발산량에 대한 예측성을 분석하였다. 한강권역 전체에 대해 예측된 월별 평균기온의 경우 실제 관측값과 비교하였을 때, PBIAS 4.2~6.4%, R2 0.97~0.98, NSE 0.97~0.98 등으로 매우 높은 예측성을 보였다. 지점별로 상세화된 기온정보를 이용하여 산정한 기준증발산량을 실제 기온으로부터 산정한 기준증발산량과 비교한 결과는 PBIAS 5.0~6.8%, R2 0.97~0.98, NSE 0.96~0.97로 기온에 대한 예측성과 유사하게 나타났다. 기온과 기준증발산량 모두 일부 월이나 일부 지점에서 관측값과 비교했을 때 다소 차이를 보이는 경우도 있었으나, 대상유역 전반적으로는 매우 안정적인 예측결과를 확인할 수 있었다. 기준증발산량에 대한 예측결과(미래 1~12개월)는 계절 및 월 단위의 유역 수자원 전망에 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF