• Title/Summary/Keyword: ASNC

Search Result 2, Processing Time 0.022 seconds

Development of Safeguards System for Advanced Spent Fuel Conditioning Process

  • Lee Tae-Hoon;Song Dae-Yong;Ko Won-Il;Kim Ho-Dong;Jeong Ki-Jeong;Park Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.426-427
    • /
    • 2005
  • Advanced Spent Fuel Conditioning Process (ACP) is a pyrochemical process in which the spent fuel of PWR is transformed into the uranic metal ingot. Through this process, which has been developed in KAERI since 1998, the radioactivity, the radiotoxicity, the heat and the volume of the PWR spent fuel are reduced by a quarter of the original. To demonstrate a lab-scale process and extract the data for the later pilot-scale process, a demonstration facility of ACP (ACPF) is under construction and the lab-scale demonstration is slated for 2006. To establish the safeguardability of ACPF, a safeguards system including a neutron counter based on non-destructive assay, which is named as ACP Safeguards Neutron Counter (ASNC), the ACP Safeguards Surveillance System (ASSS) which consists of two neutron monitors and five IAEA cameras, and Laser Induced Breakdown System (LIBS) have been developed and are ready to be installed at ACPF. The target materials of ACP to assay with ASNC are categorized into three types among which the first is the uranic metal ingot, the second is the salt waste and the last is $UO_2$ and $U_{3}O_8$ powders, rod cuts and hulls. The Pu content of process nuclear materials can be accounted with ASNC. The ASSS is integrated in the ACP Intelligent Surveillance Software (AISS) in which the IAEA camera images and background signals at the rear doors of ACPF are displayed. The composition of special nuclear materials of ACP can be measured with LIBS which can be a supporting measurement tool for ASNC. The conceptual picture of safeguards system of ACPF is shown in Fig. 1.

  • PDF

Status of Development of Pyroprocessing Safeguards at KAERI (한국원자력연구원 파이로 안전조치 기술개발 현황)

  • Park, Se-Hwan;Ahn, Seong-Kyu;Chang, Hong Lae;Han, Bo Young;Kim, Bong Young;Kim, Dongseon;Kim, Ho-Dong;Lee, Chaehun;Oh, Jong-Myeong;Seo, Hee;Shin, Hee-Sung;Won, Byung-Hee;Ku, Jeong-Hoe
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.191-197
    • /
    • 2017
  • The Korea Atomic Energy Research Institute (KAERI) has developed a safeguards technology for pyroprocessing based on the Safeguards-By-Design (SBD) concept. KAERI took part in a Member-State Support Program (MSSP) to establish a pyroprocessing safeguards approach. A Reference Engineering-scale Pyroprocessing Facility (REPF) concept was designed on which KAERI developed its safeguards system. Recently the REPF is being upgraded to the REPF+, a scaled-up facility. For assessment of the nuclear-material accountancy (NMA) system, KAERI has developed a simulation program named Pyroprocessing Material Flow and MUF Uncertainty Simulation (PYMUS). The PYMUS is currently being upgraded to include a Near-Real-Time Accountancy (NRTA) statistical analysis function. The Advanced Spent Fuel Conditioning Process Safeguards Neutron Counter (ASNC) has been updated as Non-Destructive Assay (NDA) equipment for input-material accountancy, and a Hybrid Induced-fission-based Pu-Accounting Instrument (HIPAI) has been developed for the NMA of uranium/transuranic (U/TRU) ingots. Currently, performance testing of Compton-suppressed Gamma-ray measurement, Laser-Induced Breakdown Spectroscopy (LIBS), and homogenization sampling are underway. These efforts will provide an essential basis for the realization of an advanced nuclear-fuel cycle in the ROK.