• Title/Summary/Keyword: ASCE 41

Search Result 28, Processing Time 0.024 seconds

Seismic Performance of Concrete Masonry Unit (CMU) Infills in Reinforced Concrete Moment Framing System (철근콘크리트 모멘트 골조시스템에서 조적 끼움벽의 내진성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.19-26
    • /
    • 2019
  • The masonry infill walls are one of the most popular components that are used for dividing and arranging spaces in building construction. In spite of the fact that the masonry infills have many advantages, the system needs to be used with caution when the earthquake load is to be considered. The infills tend to develop diagonal compression struts during earthquake and increase the demand in surrounding RC frames. If there are openings in the infill walls, the loading path gets even complicated and the engineering judgements are required for designing the system. In this study, a masonry infill system was investigated through finite element analysis (FEA) and the results were compared with the current design standard, ASCE 41. It is noted that the equivalent width of the compression strut estimated by ASCE 41 could be 32% less than that using detailed FEA. The global load resisting capacity was also estimated by 28% less when ASCE 41 was used compare to the FEA case. Rather than using expensive FEA, the adapting ASCE 41 for the analysis and design of the masonry infills with openings would provide a good estimation by about 25% conservatively.

Verifying ASCE 41 the evaluation model via field tests of masonry infilled RC frames with openings

  • Huang, Chun-Ting;Chiou, Tsung-Chih;Chung, Lap-Loi;Hwang, Shyh-Jiann;Jaung, Wen-Ching
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.157-174
    • /
    • 2020
  • The in-situ pushover test differs from the shake-table test because it is performed outdoors and thus its size is not restricted by space, which allows us to test a full-size building. However, to build a new full-size building for the test is not economical, consequently scholars around the world usually make scale structures or full-scale component units to be tested in the laboratory. However, if in-situ pushover tests can be performed on full-size structures, then the seismic behaviors of buildings during earthquakes can be grasped. In view of this, this study conducts two in-situ pushover tests of reinforced concrete (RC) buildings. One is a masonry-infilled RC building with openings (the openings ratio of masonry infill wall is between 24% and 51%) and the other is an RC building without masonry infill. These two in-situ pushover tests adopt obsolescent RC buildings, which will be demolished, to conduct experiment and successfully obtain seismic capacity curves of the buildings. The test results are available for the development or verification of a seismic evaluation model. This paper uses ASCE 41-17 as the main evaluation model and is accompanied by a simplified pushover analysis, which can predict the seismic capacity curves of low-rise buildings in Taiwan. The predicted maximum base shear values for masonry-infilled RC buildings with openings and for RC buildings without masonry infill are, respectively, 69.69% and 87.33% of the test values. The predicted initial stiffness values are 41.04% and 100.49% of the test values, respectively. It can be seen that the ASCE 41-17 evaluation model is reasonable for the RC building without masonry infill walls. In contrast, the analysis result for the masonry infilled RC building with openings is more conservative than the test value because the ASCE 41-17 evaluation model is limited to masonry infill walls with an openings ratio not exceeding 40%. This study suggests using ASCE 41-17's unreinforced masonry wall evaluation model to simulate a masonry infill wall with an openings ratio greater than 40%. After correction, the predicted maximum base shear values of the masonry infilled RC building with openings is 82.60% of the test values and the predicted initial stiffness value is 67.13% of the test value. Therefore, the proposed method in this study can predict the seismic behavior of a masonry infilled RC frame with large openings.

Nonlinear modeling parameters of RC coupling beams in a coupled wall system

  • Gwon, Seongwoo;Shin, Myoungsu;Pimentel, Benjamin;Lee, Deokjung
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.817-842
    • /
    • 2014
  • ASCE/SEI 41-13 provides modeling parameters and numerical acceptance criteria for various types of members that are useful for evaluating the seismic performance of reinforced concrete (RC) building structures. To accurately evaluate the global performance of a coupled wall system, it is crucial to first properly define the component behaviors (i.e., force-displacement relationships of shear walls and coupling beams). However, only a few studies have investigated on the modeling of RC coupling beams subjected to earthquake loading to date. The main objective of this study is to assess the reliability of ASCE 41-13 modeling parameters specified for RC coupling beams with various design details, based on a database compiling almost all coupling beam tests available worldwide. Several recently developed coupling beam models are also reviewed. Finally, a rational method is proposed for determining the chord yield rotation of RC coupling beams.

Simplified methods for seismic assessment of existing buildings

  • Tehranizadeh, Mohsen;Amirmojahedi, Maryam;Moshref, Amir
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1405-1428
    • /
    • 2016
  • Besides the complex instructions of guidance documents for seismic rehabilitation of existing buildings, some institutions have provided simple criteria in terms of simplified rehabilitations. ASCE 41-06 is one of documents that introduced a simple method for assessment of certain buildings that do not require advanced analytical procedures. Furthermore the New Zealand guideline has presented a simple lateral mechanism analysis that is a hand static analysis for determining the probable collapse mechanism, lateral strength and displacement capacity of the structure. The present study is focused on verifying the results of the simplified methods which is used by NZSEE and ASCE 41-06 in assessment of existing buildings. For this, three different special steel moment and braced frames are assessed under these two guidelines and the accuracy of the results is checked with the results of nonlinear static and dynamic analysis. After comparison of obtained results, suggestions are presented to improve seismic retrofit criteria.

Experimental Assessment of Numerical Models for Reinforced Concrete Shear Walls with Deficient Details (결함 상세를 포함하는 철근콘크리트 전단벽의 수치 모델에 관한 실험적 평가)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.211-222
    • /
    • 2016
  • Reinforced concrete shear walls with deficient reinforcement details are tested under cyclic loading. The deficiency of reinforcement details includes insufficient splice length in U-stirrups at the ends of horizontal reinforcement and boundary column dowel bars found in existing low- to mid-rise Korean buildings designed non-seismically. Three test specimens have rectangular, babel and flanged sections, respectively. Flexure- and shear-controlled models for reinforced concrete shear walls specified in ASCE/SEI 41-13 are compared with the flexural and shear components of force-displacement relation extracted separately from the top displacement of the specimen based on the displacement data measured at diverse locations. Modification of the shear wall models in ASCE/SEI 41-13 is proposed in order to account for the effect of bar slip, cracking loads in flexure and shear. The proposed modification shows better approximation of the test results compared to the original models.

Seismic Performance Evaluation of Piloti-type low-rise RC apartment buildings using Nonlinear Static Analysis (비선형 정적해석을 이용한 필로티형 저층 RC 집합주택의 내진성능평가)

  • Lee, Jeong-Jae;Lee, Han-Seon;Kim, Hee-Cheul;Lee, Young-Hak;Lee, Ki-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.237-240
    • /
    • 2008
  • The objective of this study is to evaluate the seismic performance of the low-rise RC apartment buildings having piloties at ground level by using nonlinear static analysis with regards to the maximum considered and design earthquakes in Korea. To do this, the target displacement at roof was estimated according to FEMA356 (or ASCE/SEI-41), and the deformations of the critical members were compared with the failure criteria of Life Safety(LS) and Collapse Prevention(CP) given in FEMA356. The conclusions are as follows: (1) columns satisfy criteria of LS and CP, but (2) the shear wall in the longitudinal direction failed to satisfy those of both LS and CP while those in the transverse direction satisfy that of LS, but failed that of CP.

  • PDF

Seismic Performance Evaluation of Steel Moment Frame Factory Building with Slender Braces (세장한 가새가 사용된 철골모멘트골조 공장시설물의 내진 성능평가)

  • Kim, Dong Yeon;Cho, Jae Chul;Hwang, Sunwoo;Kim, Taejin;Kim, Jong Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • 'Seismic Performance Evaluation Method for Existing Buildings (2013)' developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.

The effect of infill walls on the seismic behavior of boundary columns in RC frames

  • Fenerci, Aksel;Binici, Baris;Ezzatfar, Pourang;Canbay, Erdem;Ozcebe, Guney
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.539-562
    • /
    • 2016
  • The seismic behavior of a ${\frac{1}{2}}$ scaled, three-story three-bay RC frame with masonry infill walls was studied experimentally and numerically. Pseudo-dynamic test results showed that despite following the column design provisions of modern seismic codes and neglecting the presence of infill walls, shear induced damage is unavoidable in the boundary columns. A finite element model was validated by using the results of available one-story one-bay frame tests in the literature. Simulations of the examined test frame demonstrated that boundary columns are subjected to shear demands in excess of their shear capacity. Seismic assessment of the test frame was conducted by using ASCE/SEI 41-06 (2006) guidelines and the obtained results were compared with the damage observed during experiment. ASCE/SEI 41-06 method for the assessment of boundary columns was found unsatisfactory in estimating the observed damage. Damage estimations were improved when the strain limits were used within the plastic hinge zone instead of column full height.

Seismic performance of self-sustaining precast wide beam-column connections for fast construction

  • Wei Zhang;Seonhoon Kim;Deuckhang Lee;Dichuan Zhang;Jong Kim
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.339-349
    • /
    • 2023
  • Fast-built construction is a key feature for successful applications of precast concrete (PC) moment frame system in recent construction practices. To this end, by introducing some unique splicing details in precast connections, especially between PC columns including panel zones, use of temporary supports and bracings can be minimized based on their self-sustaining nature. In addition, precast wide beams are commonly adopted for better economic feasibility. In this study, three self-sustaining precast concrete (PC) wide beam-column connection specimens were fabricated and tested under reversed cyclic loadings, and their seismic performances were quantitatively evaluated in terms of strength, ductility, failure modes, energy dissipation and stiffness degradation. Test results were compared with ASCE 41-17 nonlinear modeling curves and its corresponding acceptance criteria. On this basis, an improved macro modeling method was explored for a more accurate simulation. It appeared that all the test specimens fully satisfy the acceptance criteria, but the implicit joint model recommended in ASCE 41-17 tends to underestimate the joint shear stiffness of PC wide beam-column connection. While, the explicit joint model along with concentrated plastic hinge modeling technique is able to present better accuracy in simulating the cyclic responses of PC wide beam-column connections.

Effect of Analysis Procedures on Seismic Collapse Risk of Steel Special Moment Frames (내진설계에서 사용한 해석방법이 철골 특수모멘트골조의 붕괴위험도에 미치는 영향 평가)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.243-251
    • /
    • 2020
  • In seismic design standards such as KDS 41 17 00 and ASCE 7, three procedures are provided to estimate seismic demands: equivalent lateral force (ELF), response spectrum analysis (RSA), and response history analysis (RHA). In this study, two steel special moment frames (SMFs) were designed with ELF and RSA, which have been commonly used in engineering practice. The collapse probabilities of the SMFs were evaluated according to FEMA P695 methodology. It was observed that collapse probabilities varied significantly in accordance with analysis procedures. SMFs designed with RSA (RSA-SMFs) had a higher probability of collapse than SMFs designed with ELF (ELF-SMFs). Furthermore, RSA-SMFs did not satisfy the target collapse probability specified in ASCE 7-16 whereas ELF-SMFs met the target probability.