• 제목/요약/키워드: ASA Clustering Algorithm

Search Result 3, Processing Time 0.018 seconds

Finding the Number of Clusters and Various Experiments Based on ASA Clustering Method (ASA 군집화를 이용한 군집수 결정 및 다양한 실험)

  • Yoon Bok-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.87-98
    • /
    • 2006
  • In many cases of cluster analysis we are forced to perform clustering without any prior knowledge on the number of clusters. But in some clustering methods such as k-means algorithm it is required to provide the number of clusters beforehand. In this study, we focus on the problem to determine the number of clusters in the given data. We follow the 2 stage approach of ASA clustering algorithm and mainly try to improve the performance of the first stage of the algorithm. We verify the usefulness of the method by applying it for various kinds of simulated data. Also, we apply the method for clustering two kinds of real life qualitative data.

A Two-Stage Method for Near-Optimal Clustering (최적에 가까운 군집화를 위한 이단계 방법)

  • 윤복식
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.1
    • /
    • pp.43-56
    • /
    • 2004
  • The purpose of clustering is to partition a set of objects into several clusters based on some appropriate similarity measure. In most cases, clustering is considered without any prior information on the number of clusters or the structure of the given data, which makes clustering is one example of very complicated combinatorial optimization problems. In this paper we propose a general-purpose clustering method that can determine the proper number of clusters as well as efficiently carry out clustering analysis for various types of data. The method is composed of two stages. In the first stage, two different hierarchical clustering methods are used to get a reasonably good clustering result, which is improved In the second stage by ASA(accelerated simulated annealing) algorithm equipped with specially designed perturbation schemes. Extensive experimental results are given to demonstrate the apparent usefulness of our ASA clustering method.

Clustering by Accelerated Simulated Annealing

  • Yoon, Bok-Sik;Ree, Sang-Bok
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.153-159
    • /
    • 1998
  • Clustering or classification is a very fundamental task that may occur almost everywhere for the purpose of grouping. Optimal clustering is an example of very complicated combinatorial optimization problem and it is hard to develop a generally applicable optimal algorithm. In this paper we propose a general-purpose algorithm for the optimal clustering based on SA(simulated annealing). Among various iterative global optimization techniques imitating natural phenomena that have been proposed and utilized successfully for various combinatorial optimization problem, simulated annealing has its superiority because of its convergence property and simplicity. We first present a version of accelerated simulated annealing(ASA) and then we apply ASA to develop an efficient clustering algorithm. Application examples are also given.

  • PDF