• Title/Summary/Keyword: AS method

검색결과 140,183건 처리시간 0.106초

Karmarkar's & Primal-Dual 내부점 알고리즘의 해의 수렴과정의 안정성에 관한 고찰 (A Study of stability for solution′s convergence in Karmarkar's & Primal-Dual Interior Algorithm)

  • 박재현
    • 산업경영시스템학회지
    • /
    • 제21권45호
    • /
    • pp.93-100
    • /
    • 1998
  • The researches of Linear Programming are Khachiyan Method, which uses Ellipsoid Method, and Karmarkar, Affine, Path-Following and Interior Point Method which have Polynomial-Time complexity. In this study, Karmarkar Method is more quickly solved as 50 times then Simplex Method for optimal solution. but some special problem is not solved by Karmarkar Method. As a result, the algorithm by APL Language is proved time efficiency and optimal solution in the Primal-Dual interior point algorithm. Furthermore Karmarkar Method and Primal-Dual interior point Method is compared in some examples.

  • PDF

Heat Production Determined by the Respiration-Calorimetric Method and Body Balance Method

  • Han, In-K.
    • Journal of Nutrition and Health
    • /
    • 제1권1호
    • /
    • pp.33-36
    • /
    • 1968
  • Amounts of heat production determined by two indirect calorimetric methods, i.e., respiration-calorimetric method and body balance method were compared. In this report the apparatus, its operation and computation procedures for Haldane respiration-calorimetry modified by Han as well as procedures for body balance method are described. It was found that the heat production measured by two methods are similar.

  • PDF

A Study on Support Vectors of Least Squares Support Vector Machine

  • Seok, Kyungha;Cho, Daehyun
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.873-878
    • /
    • 2003
  • LS-SVM(Least-Squares Support Vector Machine) has been used as a promising method for regression as well as classification. Suykens et al.(2000) used only the magnitude of residuals to obtain SVs(Support Vectors). Suykens' method behaves well for homogeneous model. But in a heteroscedastic model, the method shows a poor behavior. The present paper proposes a new method to get SVs. The proposed method uses the variance of noise as well as the magnitude of residuals to obtain support vectors. Through the simulation study we justified excellence of our proposed method.

SS316강 배관 용접부에 대한 이론적 온도해석 (Theoretical Temperature Analysis for 88316 Piping Weld)

  • 김종성;이승건;진태은;권순만
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1623-1629
    • /
    • 2003
  • In this paper, the arc beam is considered as a moving disc heat source with a pseudo-Gaussian distribution of heat intensity. The solution for temperature distribution on welds is derived by using the image heat source method and the superposition method. It is general solution in that it can determine the temperature-rise distribution in and around the arc beam heat source, as well as the width and depth of the melt pool (MP) and the heat-affected zone (HAZ) in welding short lengths, where quasi-stationary conditions may not have been established. As a comparative study, the results of this analytical approach has been compared with that of the finite-element modeling. As a result, The theoretical analysis presented here has shown good consistency and is more time/cost-effective method compared with FEM.

주거용 부하에 대한 고조파 영향 분석 및 개선된 부하모델 개발 (Analysis of Harmonics Effect and Development of Improved Load Model for Residential Loads)

  • 지평식;이대종;이종필;박재원;임재윤
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.362-369
    • /
    • 2008
  • In this study, we developed RBFN(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method considers harmonic information as well as fundamental frequency and voltage considered as essential factors in conventional method. Thus, the proposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. RBFN has some advantage such as simple structure and rapid computation ability compared with multi-layer perceptorn which is extensively applied for load modeling. To verify the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynomial method, MLPN and RBFN with no harmonic components.

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

모델 매칭법과 규범모델 추종방식에 의한 디젤기관의 적응속도제어 (An Adaptive Speed Control of a Diesel Engine by means of a Model Matching method and the Nominal Model Tracking Method)

  • 유희한;소명옥;박재식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.609-616
    • /
    • 2003
  • The purpose of this study is to design the adaptive speed control system of a marine diesel engine by combining the Model Matching Method and the Nominal Model Tracking Method. The authors proposed already a new method to determine efficiently the PID control Parameters by the Model Matching Method. typically taking a marine diesel engine as a non-oscillatory second-order system. But. actually it is very difficult to find out the exact model of a diesel engine. Therefore, when diesel engine model and actual diesel engine are unmatched as an another approach to promote the speed control characteristics of a marine diesel engine, this paper Proposes a Model Reference Adaptive Speed Control system of a diesel engine, in which PID control system for the model of a diesel engine is adopted as the nominal model and Fuzzy controller and derivative operator are adopted as the adaptive controller.

DIRECT INELASTIC EARTHQUAKE DESIGN OF R/C STRUCTURE

  • 박홍근;엄태성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.472-477
    • /
    • 2004
  • A new earthquake design method performing iterative calculations with secant stiffness was developed. Since basically the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the structural members through iterative calculations. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. The proposed method, as an integrated analysis and design method, can directly address the earthquake design strategy intended by the engineer, such as limited ductility of member and the concept of strong column - weak beam. Through iterative calculations on a structural model with member sizes preliminarily assumed, the strength and ductility demands of each member can be determined so as to satisfy the given design strategy. As the result, structural safety and economical design can be achieved.

  • PDF

축류송풍기의 저소음 설계에서 수치최적화기법들의 평가 (Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan)

  • 최재호;김광용
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제2C권5호
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.