Segmentation of image data is an important problem in computer vision, remote sensing, and image analysis. Most objects in the real world have textured surfaces. Segmentation based on texture information is possible even if there are no apparent intensity edges between the different regions. There are many existing methods for texture segmentation and classification, based on different types of statistics that can be obtained from the gray-level images. In this paper, we use a neural network model --- ART-2 (Adaptive Resonance Theory) for textures in an image, proposed by Carpenter and Grossberg. In our experiments, we use Walsh matrix as feature value for textured image.
ART(Adaptive Resonance Theory) 신경회로망과 같은 자기조직망에서 신호와 잡음을 적절히 정의한다는 것은 어려운 문제이다. 즉, 한 입력 패턴의 일부분이 어떤 패턴에서는 입력 패턴의 신호로 다루어지나 다른 패턴에서는 잡음으로 취급되어야 할 대도 있다. ART 신경회로망 모델은 신호와 잡음의 정의를 문맥과 학습에 따라 적절하게 규정하기 위하여 계산 단위를 자동적으로 자기척도(Self-Scaling 할 수 있는 기능을 가지고 있다. ART 모델에서의 이러한 자기 척도 기능은 입력 패턴들이 유사한 성질을 가진 경우에는 유효하게 잘 동작한다. 그러나 ART 모델은 기본적으로 하나의 경계 인수에 의해 패턴을 분류하기 때문에 여러가지 성질이 복합된 입력 패턴을 효율적으로 분류하기가 어렵다. 예를 들어 패턴들을 자세하게 분류하기 위하여 경계 인수의 값을 크게 하면 잡음으로 취급되어야 할 부분이 신호로 취급되어 불필요한 인식 부류가 발생한다. 또한 경계 인수를 작게 하면 패턴을 구별하기 위한 중요한 정보가 잡음으로 취급되는 경우가 발생하여 비효율적인 분류를 한다. 본 논문에서는 ART 모델의 이러한 문제점을 해결하기 위하여 복합 특징을 분리 처리할 수 잇는 모듈화된 Coupled-ART 신경회로망 모델을 제안하였다. Coupled-ART 신경회로망 모델은 신경회로망의 구조를 기능별로 모듈화하고 이러한 모듈들을 서로 밀착된 구조로 결합하여 확장된 기능을 수행하는 형태로 구성하였다. 이러한 모듈화된 신경회로망을 통해 패턴 인식 과정에서 다양한 크기나 성질을 가진 특징들에 대한 분류를 비슷한 크기나 성질을 가진 특징들끼리 분리하여 분류를 하였다. 그리고 본 논문에서 제안한 상위층에서 각 모듈의 처리 결과를 종합하여 최종적인 분류를 함으로써 기존의 ART 모델보다 더 효율적으로 패턴을 분류할 수 있다.28.8%$)에서 높고 60 및 40%수분구(水分區)($23.6{\sim}24.1%$)에서 낮은 편이었다. 그러나 옥수수의 조섬유함량(粗纖維含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)은 60%수분구(水分區)($14.2{\sim}21.6%$) 및 40%수분구(水分區)($13.8{\sim}16.0%$)가 다른 고토양수분구(高土壤水分區)($7.3{\sim}13.9%$)보다 높은 편이었다. 5. 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 $24.6{\sim}36.7%$로서 건엽중(乾葉中)의 함량(含量)보다 월등히 높았고 조단백질함량(粗蛋白質含量)은 $2.0{\sim}5.3%$로서 건엽중(乾葉中)의 함량(含量)보다 현저히 낮았다. 특(特)히 P.931의 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 다른 작물(作物)에 비해 현저(顯著)히 높은 편이었다.적차이(量的差異)를 나타냈다.間)에는 부(負)(-)의 상관(相關)이 있다.($P{\leq}0.01%$). 5. NEL 및 starch value 환경온도(環境溫度)가 상승(上昇)됨에 따라 감소(減少)된다. 4 엽기(葉期) sorghum식물(植物)의 환경온도(環境溫度)를 달리 하였을 때 NEL가치(價値)는 각각(各各) 4.87MJ($30/25^{\circ}C$), 5.46MJ($25/20^{\circ}C$) 및 5.81MJ/kg($18/8^{\circ}C$)로 변(變)하여 고온(高溫)에서 net energy lactation 축적(蓄積)이 크게 감소(減少)되었다.다.
This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.
This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.
현재의 출입국 관리는 여권을 제시하면 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권 데이터베이스와 대비하는 것이다. 본 논문에서는 여권의 정보를 인식 할 수 있는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 ART2 알고리즘을 RBF 네트워크의 중간층으로 적용하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법으로 동작하는 RBF 네트워크를 적용한다. 사진 영역은 코드의 문자열 영역을 추출한 후에 코드의 문자열 영역이 시작되는 좌표를 중심으로 사진 영역을 추출한 후, Luminance, Edge, Hue 정보를 이용하여 사진 부분을 검증한다. 검증된 사진 부분 영상은 ART2 알고리즘을 적용하여 사진의 특징들을 분류하고, 이를 이용하여 사진 인증을 하게 된다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.
본 논문에서는 프레스공정라인에서 발생하는 고장을 감지하고 분류하기 위한 고장진단기법을 제안한다. 또한 윤활유 레벨을 자동감지 하기 위한 방법도 제안하다. 제안한 방법에서는 FFT 주파수해석과 여러 경계인수를 갖는 ART2 신경회로망을 사용하며, LabVIEW를 이용하여 고장진단 및 윤활유 레벨 자동감시를 위한 GUI(Graphical User Interface) 프로그램을 제작하여 고장진단을 수행하였다. 실험결과들로부터 제안한 유도전동기 고장진단 및 윤활유 레벨 자동감시시스템의 성능을 확인하였다.
본 논문에서는 다면체의 인식을 위하여 사용되는 여러-방향-보기 방법 (multiple-view approach)에서, ART-1 신경망을 이용하여 모델베이스의 탐색공간 크기를 줄이기 위한 방법을 제안한다. 이 방법에서 모델베이스는 물체를 둘러싸고 있는 보기 구체의 미리 정해진 시점에서 관측된 2차원 투영체에서 추출된 특징들로 구성된다.
본 논문에서는 ART(Adaptive Resonance Theory) 신경회로망을 이용하여 한글 모음을 인식하고, 그 유형을 분류하는 방법을 제안하였다. 기존의 연구들은 단순히 문자의 선분, 획 등의 정합만을 이용하여 한글의 자소 분류에 중점을 두었다. 그러나 인식 대상 운자의 특성이 각각 다르므로 효율적인 인식을 위해서는 먼저 포괄적인 특정적 유형 분류가 필요하다. 제안된 한글 유형 분류 시스템에서는 먼저 ART 신경회로망의 문제점인 증가분류 알고리즘의 단점을 최소화할 수 있도록 비교층에 최초 활성화패턴의 크기를 기억하는 메모리를 두고 각 층간 하향틀 변화를 경계인수 값을 "1" 이내로 제한하여 이미 입력된 패턴을 다시 입력할 때, 새로운 노드의 활성화를 방지하여 비교적 입력순서에 둔감한 분류가 가능하였다. 실험 결과 제안된 시스템에서는 한글의 6형식 중 1, 3, 4, 5형식 분류는 평균 97.3% 의 분류율을 보였으나, 나머지 2, 6형식 분류는 다소 떨어지는 평균 94.9% 분류율를 보였다.
딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.
Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.406-412
/
2022
Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.