• Title/Summary/Keyword: ART2 Neural Network

검색결과 136건 처리시간 0.021초

ART2를 이용한 효율적인 텍스처 분할과 합병 (Texture Segmentation using ART2)

  • 김도년;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.974-976
    • /
    • 1995
  • Segmentation of image data is an important problem in computer vision, remote sensing, and image analysis. Most objects in the real world have textured surfaces. Segmentation based on texture information is possible even if there are no apparent intensity edges between the different regions. There are many existing methods for texture segmentation and classification, based on different types of statistics that can be obtained from the gray-level images. In this paper, we use a neural network model --- ART-2 (Adaptive Resonance Theory) for textures in an image, proposed by Carpenter and Grossberg. In our experiments, we use Walsh matrix as feature value for textured image.

  • PDF

복합 특징의 분리 처리를 위한 모듈화된 Coupled-ART 신경회로망 (A Coupled-ART Neural Network Capable of Modularized Categorization of Patterns)

  • 우용태;이남일;안광선
    • 한국통신학회논문지
    • /
    • 제19권10호
    • /
    • pp.2028-2042
    • /
    • 1994
  • ART(Adaptive Resonance Theory) 신경회로망과 같은 자기조직망에서 신호와 잡음을 적절히 정의한다는 것은 어려운 문제이다. 즉, 한 입력 패턴의 일부분이 어떤 패턴에서는 입력 패턴의 신호로 다루어지나 다른 패턴에서는 잡음으로 취급되어야 할 대도 있다. ART 신경회로망 모델은 신호와 잡음의 정의를 문맥과 학습에 따라 적절하게 규정하기 위하여 계산 단위를 자동적으로 자기척도(Self-Scaling 할 수 있는 기능을 가지고 있다. ART 모델에서의 이러한 자기 척도 기능은 입력 패턴들이 유사한 성질을 가진 경우에는 유효하게 잘 동작한다. 그러나 ART 모델은 기본적으로 하나의 경계 인수에 의해 패턴을 분류하기 때문에 여러가지 성질이 복합된 입력 패턴을 효율적으로 분류하기가 어렵다. 예를 들어 패턴들을 자세하게 분류하기 위하여 경계 인수의 값을 크게 하면 잡음으로 취급되어야 할 부분이 신호로 취급되어 불필요한 인식 부류가 발생한다. 또한 경계 인수를 작게 하면 패턴을 구별하기 위한 중요한 정보가 잡음으로 취급되는 경우가 발생하여 비효율적인 분류를 한다. 본 논문에서는 ART 모델의 이러한 문제점을 해결하기 위하여 복합 특징을 분리 처리할 수 잇는 모듈화된 Coupled-ART 신경회로망 모델을 제안하였다. Coupled-ART 신경회로망 모델은 신경회로망의 구조를 기능별로 모듈화하고 이러한 모듈들을 서로 밀착된 구조로 결합하여 확장된 기능을 수행하는 형태로 구성하였다. 이러한 모듈화된 신경회로망을 통해 패턴 인식 과정에서 다양한 크기나 성질을 가진 특징들에 대한 분류를 비슷한 크기나 성질을 가진 특징들끼리 분리하여 분류를 하였다. 그리고 본 논문에서 제안한 상위층에서 각 모듈의 처리 결과를 종합하여 최종적인 분류를 함으로써 기존의 ART 모델보다 더 효율적으로 패턴을 분류할 수 있다.28.8%$)에서 높고 60 및 40%수분구(水分區)($23.6{\sim}24.1%$)에서 낮은 편이었다. 그러나 옥수수의 조섬유함량(粗纖維含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)에 따라 큰 차이(差異)가 없었다. 건엽(乾葉)의 조단백질함량(粗蛋白質含量)은 60%수분구(水分區)($14.2{\sim}21.6%$) 및 40%수분구(水分區)($13.8{\sim}16.0%$)가 다른 고토양수분구(高土壤水分區)($7.3{\sim}13.9%$)보다 높은 편이었다. 5. 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 $24.6{\sim}36.7%$로서 건엽중(乾葉中)의 함량(含量)보다 월등히 높았고 조단백질함량(粗蛋白質含量)은 $2.0{\sim}5.3%$로서 건엽중(乾葉中)의 함량(含量)보다 현저히 낮았다. 특(特)히 P.931의 건경중(乾莖中)의 조섬유함량(粗纖維含量)은 다른 작물(作物)에 비해 현저(顯著)히 높은 편이었다.적차이(量的差異)를 나타냈다.間)에는 부(負)(-)의 상관(相關)이 있다.($P{\leq}0.01%$). 5. NEL 및 starch value 환경온도(環境溫度)가 상승(上昇)됨에 따라 감소(減少)된다. 4 엽기(葉期) sorghum식물(植物)의 환경온도(環境溫度)를 달리 하였을 때 NEL가치(價値)는 각각(各各) 4.87MJ($30/25^{\circ}C$), 5.46MJ($25/20^{\circ}C$) 및 5.81MJ/kg($18/8^{\circ}C$)로 변(變)하여 고온(高溫)에서 net energy lactation 축적(蓄積)이 크게 감소(減少)되었다.다.

  • PDF

ANALOG COMPUTING FOR A NEW NUCLEAR REACTOR DYNAMIC MODEL BASED ON A TIME-DEPENDENT SECOND ORDER FORM OF THE NEUTRON TRANSPORT EQUATION

  • Pirouzmand, Ahmad;Hadad, Kamal;Suh, Kune Y.
    • Nuclear Engineering and Technology
    • /
    • 제43권3호
    • /
    • pp.243-256
    • /
    • 2011
  • This paper considers the concept of analog computing based on a cellular neural network (CNN) paradigm to simulate nuclear reactor dynamics using a time-dependent second order form of the neutron transport equation. Instead of solving nuclear reactor dynamic equations numerically, which is time-consuming and suffers from such weaknesses as vulnerability to transient phenomena, accumulation of round-off errors and floating-point overflows, use is made of a new method based on a cellular neural network. The state-of-the-art shows the CNN as being an alternative solution to the conventional numerical computation method. Indeed CNN is an analog computing paradigm that performs ultra-fast calculations and provides accurate results. In this study use is made of the CNN model to simulate the space-time response of scalar flux distribution in steady state and transient conditions. The CNN model also is used to simulate step perturbation in the core. The accuracy and capability of the CNN model are examined in 2D Cartesian geometry for two fixed source problems, a mini-BWR assembly, and a TWIGL Seed/Blanket problem. We also use the CNN model concurrently for a typical small PWR assembly to simulate the effect of temperature feedback, poisons, and control rods on the scalar flux distribution.

신경망의 스펙트럼 분석기를 이용한 패턴 인식 (Pattern Recognition Using Spectrum Analyzer and Neural Network)

  • 김남익;한수환;전도홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.211-214
    • /
    • 1996
  • This paper propose a method for pattern recogniton using spectrum analyzer and fuzzy ARTMAP. Contour sequences obtained from 2-D planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The Fourier transform of contour sequence and spectrum analyzer are used as a means of feature selection and data reduction. The three dimensional spectral feature vectors are extracted by spectrum analyzer from the FFT spectrum. These Spectral feature vectors are invariant to shape translation, rotation, and scale transformations. The fuzzy ARTMAP neural network which is combined with two fuzzy ART modules is trained and tested with these feature vectors. The experiments include 4 aircrafts and 4 industrial parts recognition process are presented to illustrate the high performance of this proposed method in the ion problems of noisv shapes.

  • PDF

개선된 신경망과 사진 인증을 이용한 여권 인식 (Recognition of Passports using Enhanced Neural Networks and Photo Authentication)

  • 김광백;박현정
    • 한국정보통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.983-989
    • /
    • 2006
  • 현재의 출입국 관리는 여권을 제시하면 여권을 육안으로 검색하고 수작업으로 정보를 입력하여 여권 데이터베이스와 대비하는 것이다. 본 논문에서는 여권의 정보를 인식 할 수 있는 방법을 제안한다. 제안된 여권 인식 방법은 소벨 연산자와 수평 스미어링, 윤곽선 추적 알고리즘을 적용하여 코드의 문자열 영역을 추출한다. 추출된 문자열 영역을 이진화하고 이진화된 문자열 영역에 대해서 개별 코드의 문자들을 복원하기 위하여 CDM 마스크를 적용한 후에 수직 스미어링을 적용하여 개별 코드의 문자를 추출한다. 개별 코드의 인식은 ART2 알고리즘을 RBF 네트워크의 중간층으로 적용하고 중간층과 출력층의 학습에는 일반화된 델타 학습 방법으로 동작하는 RBF 네트워크를 적용한다. 사진 영역은 코드의 문자열 영역을 추출한 후에 코드의 문자열 영역이 시작되는 좌표를 중심으로 사진 영역을 추출한 후, Luminance, Edge, Hue 정보를 이용하여 사진 부분을 검증한다. 검증된 사진 부분 영상은 ART2 알고리즘을 적용하여 사진의 특징들을 분류하고, 이를 이용하여 사진 인증을 하게 된다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

프레스공정시스템에서 유도전동기 및 윤활유 레벨 상태모니터링을 위한 진단시스템 개발 (Diagnostic system development for state monitoring of induction motor and oil level in press process system)

  • 이인수
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.706-712
    • /
    • 2009
  • 본 논문에서는 프레스공정라인에서 발생하는 고장을 감지하고 분류하기 위한 고장진단기법을 제안한다. 또한 윤활유 레벨을 자동감지 하기 위한 방법도 제안하다. 제안한 방법에서는 FFT 주파수해석과 여러 경계인수를 갖는 ART2 신경회로망을 사용하며, LabVIEW를 이용하여 고장진단 및 윤활유 레벨 자동감시를 위한 GUI(Graphical User Interface) 프로그램을 제작하여 고장진단을 수행하였다. 실험결과들로부터 제안한 유도전동기 고장진단 및 윤활유 레벨 자동감시시스템의 성능을 확인하였다.

다면체 인식을 위한 탐색 공간 감소 기법 (A Reduction Method of Search Space for Polyhedral Object Recognition)

  • 이상용
    • 한국지능시스템학회논문지
    • /
    • 제13권4호
    • /
    • pp.381-385
    • /
    • 2003
  • 본 논문에서는 다면체의 인식을 위하여 사용되는 여러-방향-보기 방법 (multiple-view approach)에서, ART-1 신경망을 이용하여 모델베이스의 탐색공간 크기를 줄이기 위한 방법을 제안한다. 이 방법에서 모델베이스는 물체를 둘러싸고 있는 보기 구체의 미리 정해진 시점에서 관측된 2차원 투영체에서 추출된 특징들로 구성된다.

ART 신경회로망을 이용한 한글 유형 분류에 관한 연구 (A Study on the Hangeul Pattern Classification by Using Adaptive Resonance Theory Neural Network)

  • 장재혁;박장한;남궁재찬
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.603-606
    • /
    • 2003
  • 본 논문에서는 ART(Adaptive Resonance Theory) 신경회로망을 이용하여 한글 모음을 인식하고, 그 유형을 분류하는 방법을 제안하였다. 기존의 연구들은 단순히 문자의 선분, 획 등의 정합만을 이용하여 한글의 자소 분류에 중점을 두었다. 그러나 인식 대상 운자의 특성이 각각 다르므로 효율적인 인식을 위해서는 먼저 포괄적인 특정적 유형 분류가 필요하다. 제안된 한글 유형 분류 시스템에서는 먼저 ART 신경회로망의 문제점인 증가분류 알고리즘의 단점을 최소화할 수 있도록 비교층에 최초 활성화패턴의 크기를 기억하는 메모리를 두고 각 층간 하향틀 변화를 경계인수 값을 "1" 이내로 제한하여 이미 입력된 패턴을 다시 입력할 때, 새로운 노드의 활성화를 방지하여 비교적 입력순서에 둔감한 분류가 가능하였다. 실험 결과 제안된 시스템에서는 한글의 6형식 중 1, 3, 4, 5형식 분류는 평균 97.3% 의 분류율을 보였으나, 나머지 2, 6형식 분류는 다소 떨어지는 평균 94.9% 분류율를 보였다.

  • PDF

딥러닝의 모형과 응용사례 (Deep Learning Architectures and Applications)

  • 안성만
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.127-142
    • /
    • 2016
  • 딥러닝은 인공신경망(neural network)이라는 인공지능분야의 모형이 발전된 형태로서, 계층구조로 이루어진 인공신경망의 내부계층(hidden layer)이 여러 단계로 이루어진 구조이다. 딥러닝에서의 주요 모형은 합성곱신경망(convolutional neural network), 순환신경망(recurrent neural network), 그리고 심층신뢰신경망(deep belief network)의 세가지라고 할 수 있다. 그 중에서 현재 흥미로운 연구가 많이 발표되어서 관심이 집중되고 있는 모형은 지도학습(supervised learning)모형인 처음 두 개의 모형이다. 따라서 본 논문에서는 지도학습모형의 가중치를 최적화하는 기본적인 방법인 오류역전파 알고리즘을 살펴본 뒤에 합성곱신경망과 순환신경망의 구조와 응용사례 등을 살펴보고자 한다. 본문에서 다루지 않은 모형인 심층신뢰신경망은 아직까지는 합성곱신경망 이나 순환신경망보다는 상대적으로 주목을 덜 받고 있다. 그러나 심층신뢰신경망은 CNN이나 RNN과는 달리 비지도학습(unsupervised learning)모형이며, 사람이나 동물은 관찰을 통해서 스스로 학습한다는 점에서 궁극적으로는 비지도학습모형이 더 많이 연구되어야 할 주제가 될 것이다.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.