• Title/Summary/Keyword: ART Algorithm

Search Result 585, Processing Time 0.026 seconds

Vessel Tracking Algorithm using Multiple Local Smooth Paths (지역적 다수의 경로를 이용한 혈관 추적 알고리즘)

  • Jeon, Byunghwan;Jang, Yeonggul;Han, Dongjin;Shim, Hackjoon;Park, Hyungbok;Chang, Hyuk-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.137-145
    • /
    • 2016
  • A novel tracking method is proposed to find coronary artery using high-order curve model in coronary CTA(Computed Tomography Angiography). The proposed method quickly generates numerous artificial trajectories represented by high-order curves, and each trajectory has its own cost. The only high-ranked trajectories, located in the target structure, are selected depending on their costs, and then an optimal curve as the centerline will be found. After tracking, each optimal curve segment is connected, where optimal curve segments share the same point, to a single curve and it is a piecewise smooth curve. We demonstrated the high-order curve is a proper model for classification of coronary artery. The experimental results on public data set sho that the proposed method is comparable at both accuracy and running time to the state-of-the-art methods.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

Smoothed Group-Sparsity Iterative Hard Thresholding Recovery for Compressive Sensing of Color Image (컬러 영상의 압축센싱을 위한 평활 그룹-희소성 기반 반복적 경성 임계 복원)

  • Nguyen, Viet Anh;Dinh, Khanh Quoc;Van Trinh, Chien;Park, Younghyeon;Jeon, Byeungwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.173-180
    • /
    • 2014
  • Compressive sensing is a new signal acquisition paradigm that enables sparse/compressible signal to be sampled under the Nyquist-rate. To fully benefit from its much simplified acquisition process, huge efforts have been made on improving the performance of compressive sensing recovery. However, concerning color images, compressive sensing recovery lacks in addressing image characteristics like energy distribution or human visual system. In order to overcome the problem, this paper proposes a new group-sparsity hard thresholding process by preserving some RGB-grouped coefficients important in both terms of energy and perceptual sensitivity. Moreover, a smoothed group-sparsity iterative hard thresholding algorithm for compressive sensing of color images is proposed by incorporating a frame-based filter with group-sparsity hard thresholding process. In this way, our proposed method not only pursues sparsity of image in transform domain but also pursues smoothness of image in spatial domain. Experimental results show average PSNR gains up to 2.7dB over the state-of-the-art group-sparsity smoothed recovery method.

Efficient Face Detection using Adaboost and Facial Color (얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출)

  • Chae, Yeong-Nam;Chung, Ji-Nyun;Yang, Hyun-S.
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.548-559
    • /
    • 2009
  • The cascade face detector learned by Adaboost algorithm, which was proposed by Viola and Jones, is state of the art face detector due to its great speed and accuracy. In spite of its great performance, it still suffers from false alarms, and more computation is required to reduce them. In this paper, we want to reduce false alarms with less computation using facial color. Using facial color information, proposed face detection model scans sub-window efficiently and adapts a fast face/non-face classifier at the first stage of cascade face detector. This makes face detection faster and reduces false alarms. For facial color filtering, we define a facial color membership function, and facial color filtering image is obtained using that. An integral image is calculated from facial color filtering image. Using this integral image, its density of subwindow could be obtained very fast. The proposed scanning method skips over sub-windows that do not contain possible faces based on this density. And the face/non-face classifier at the first stage of cascade detector rejects a non-face quickly. By experiment, we show that the proposed face detection model reduces false alarms and is faster than the original cascade face detector.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

PSS Movement Prediction Algorithm for Seamless hando (휴대인터넷에서 seamless handover를 위한 단말 이동 예측 알고리즘)

  • Lee, Ho-Jeong;Yun, Chan-Young;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.53-60
    • /
    • 2006
  • Handover of WiBro is based on 802.16e hard handover scheme. When PSS is handover, it is handover that confirm neighbor's cell condition and RAS ID in neighbor advertisement message. Serving RAS transmits HO-notification message to neighbor RAS. Transmiting HO-notification message to neighbor RAS, it occurs many signaling traffics. Also, When WiBro is handover, It occurs many packet loss. Therefore, user suffer service degradation. LPM handover is supporting seamless handover because it buffers data packets during handover. So It is proposed scheme that predicts is LPM handover and reserves target RAS with pre-authentication. These schemes occur many signaling traffics. In this paper, we propose PSS Movement Prediction to solve signaling traffic. Target RAS is decided by old data in history cache. When serving RAS receives HO-notification-RSP message to target RAS, target RAS inform to crossover node. And crossover node bicast data packet. If handover is over, target RAS forward data packet. Therefore, It reduces signaling traffics but increase handover success rate. When history cache success, It decrease about 48% total traffic. But When history cache fails, It increase about 6% total traffic

The comparative analysis of image fusion results by using KOMPSAT-2/3 images (아리랑 2호/3호 영상을 이용한 영상융합 비교 분석)

  • Oh, Kwan Young;Jung, Hyung Sup;Jeong, Nam Ki;Lee, Kwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.117-132
    • /
    • 2014
  • This paper had a purpose on analyzing result data from pan-sharpening, which have applied on the KOMPSAT-2 and -3 image. Particularly, the study focused on comparing each relative spectral response functions, which considers to cause color distortions of fused image. Two images from same time and location have been collected by KOMPSAT-2 and -3 to apply in the experiment. State-of-the-art algorithms of GIHS, GS1, GSA and GSA-CA were employed for analyzing the results in quantitatively and qualitatively. Following analysis of previous studies, GSA and GSA-CA methods resulted excellent quality in both of KOMPSAT-2/3 results, since they minimize spectral discordances between intensity and PAN image by the linear regression algorithm. It is notable that performances from KOMPSAT-2 and- 3 are not equal under same circumstances because of different spectral characteristics. In fact, KOMPSAT-2 is known as over-injection of low spatial resolution components of blue and green band, are greater than that of the PAN band. KOMPSAT-3, however, has been advanced in most of misperformances and weaknesses comparing from the KOMPSAT-2.

File System Support for Multimedia Streaming in Internet Home Appliances (인터넷 홈서버를 위한 스트리밍 전용 파일 시스템)

  • 박진연;송승호;진종현;원유집;박승민;김정기
    • Journal of Broadcast Engineering
    • /
    • v.6 no.3
    • /
    • pp.246-259
    • /
    • 2001
  • Due to recent rapid deployment of Internet streaming service and digital broadcasting service, the issue of how to efficiently support streaming workload in so called "Internet Home Appliance" receives prime interests from industry as well as academia. The underlying dilemma is that it may not be feasible to put cutting edge CPU, boards, disks and other peripherals into that type of device. The primary reason is its cost. Usually, Internet Home Appliances has its dedicated usage, e.g. Internet Radio, and thus it does not require high-end CPU nor high-end Va subsystem. The same reasoning applies to I/O subsystem. In Internet Home Appliances dedicated to handle compressed moving picture, it is not equipped with high end SCSI disk with fast rotational speed. Thus, it is mandatory to devise elaborate software algorithm to exploit the available hardware resources and maximize the efficiency of the system. This paper presents our experiences in the design and implementation of a new multimedia file system which can efficiently deliver the required disk bandwidth for a periodic I/O workload. We have implemented the file system on the Linux operating system, and examined itsperformance under streaming I/O workload. The results of the study show that the proposed file system exhibits superior performance than the Linux Ext2 file system under streaming I/O workload. The result of this work not only contribute to advance the state f art file system technology for multimedia streaming but also put forth the software which is readily available and can be deployed. deployed.

  • PDF

Development of Ubiquitous Sensor Network Quality Control Algorithm for Highland Cabbage (고랭지배추 생육을 위한 유비쿼터스 센서 네트워크 품질관리 알고리즘 개발)

  • Cho, Changje;Hwang, Guenbo;Yoon, Sanghoo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.337-347
    • /
    • 2018
  • Weather causes much of the risk of agricultural activity. For efficient farming, we need to use weather information. Modern agriculture has been developed to create high added value through convergence with state-of-the-art Information and Communication Technology (ICT). This study deals with the quality control algorithms of weather monitoring equipment through Ubiquitous Sensor Network (USN) observational equipment for efficient cultivation of cabbage. Accurate weather observations are important. To achieve this goal, the Korea Meteorological Administration, for example, developed various quality control algorithms to determine regularity of the observation. The research data of this study were obtained from five USN stations, which were installed in Anbandegi and Gwinemi from 2015 to 2017. Quality control algorithms were developed for flat line check, temporal outliers check, time series consistency check and spatial outliers check. Finally, the quality control algorithms proposed in this study can also identify potential abnormal observations taking into account the temporal and spatial characteristics of weather data. It is expected to be useful for efficient management of highland cabbage production by providing quality-controlled weather data.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.