• Title/Summary/Keyword: ARP sequence

Search Result 4, Processing Time 0.02 seconds

Expression of EuNOD-ARP1 Encoding Auxin-repressed Protein Homolog Is Upregulated by Auxin and Localized to the Fixation Zone in Root Nodules of Elaeagnus umbellata

  • Kim, Ho Bang;Lee, Hyoungseok;Oh, Chang Jae;Lee, Nam Houn;An, Chung Sun
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • Root nodule formation is controlled by plant hormones such as auxin. Auxin-repressed protein (ARP) genes have been identified in various plant species but their functions are not clear. We have isolated a full-length cDNA clone (EuNOD-ARP1) showing high sequence homology to previously identified ARP genes from root nodules of Elaeagnus umbellata. Genomic Southern hybridization showed that there are at least four ARP-related genes in the genome of E. umbellata. The cDNA clone encodes a polypeptide of 120 amino acid residues with no signal peptide or organelle-targeting signals, indicating that it is a cytosolic protein. Its cytosolic location was confirmed using Arabidopsis protoplasts expressing a EuNOD-ARP1:smGFP fusion protein. Northern hybridization showed that EuNOD-ARP1 expression was higher in root nodules than in leaves or uninoculated roots. Unlike the ARP genes of strawberry and black locust, which are negatively regulated by exogenous auxin, EuNOD-ARP1 expression is induced by auxin in leaf tissue of E. umbellata. In situ hybridization revealed that EuNOD-ARP1 is mainly expressed in the fixation zone of root nodules.

A Novel Sensor Data Transferring Method Using Human Data Muling in Delay Insensitive Network

  • Basalamah, Anas
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.21-28
    • /
    • 2021
  • In this paper, a novel data transferring method is introduced that can transmit sensor data without using data bandwidth or an extra-processing cycle in a delay insensitive network. The proposed method uses human devices as Mules, does not disturb the device owner for permission, and saves energy while transferring sensor data to the collection hub in a wireless sensor network. This paper uses IP addressing technique as the data transferring mechanism by embedding the sensor data with the IP address of a Mule. The collection hub uses the ARP sequence method to extract the embedded data from the IP address. The proposed method follows WiFi standard in its every step and ends when data collection is over. Every step of the proposed method is discussed in detail with the help of figures in the paper.

TCP Session Recovery Technique for High Availability in Smart On-Devices (스마트 온디바이스의 고가용성을 위한 TCP 세션 복구 기술)

  • Hong, Seungtae;Kim, Beob-Kyun;Lee, Kwang-Yong;Kim, Jeong-Si;Lim, Chae-Deok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.6
    • /
    • pp.261-270
    • /
    • 2017
  • With the development of smart on-devices and communication technology, demand for non-stop services is increasing. Therefore, the high availability for continuously providing services in the event of system failure has been spotlighted. Meanwhile, because most internet-based services are provided by using TCP, an efficient TCP session recovery technique for providing non-stop services is required. However, the existing TCP session recovery techniques are inefficient because it has a high recovery cost or does not support failover operation, To solve these problems, in this paper, we propose a TCP session recovery technique for high availability in smart on-devices. For this, we first recover the TCP session without re-establish the TCP session by correcting a sequence number and a acknowledgment number. Second, we synchronize the TCP session recovery data between the master and the server, and then we operate the failover operation when master server fails. Finally, we provide the non-stop service to peer by using the virtual IP number and the transmission of GARP (Gratuitous ARP) packet.

Optimum Interleaver Design and Performance Analysis of Double-Binary Turbo Code for Wireless Metropolitan Area Networks (WMAN 시스템의 이중 이진 구조 터보부호 인터리버 최적화 설계 및 성능 분석)

  • Park, Sung-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Double-binary turbo code has been adopted as an error control code of various future communication systems including wireless metropolitan area networks(WMAN) due to its powerful error correction capability. One of the components affecting the performance of turbo code is internal interleaver. In 802.16 d/e system, an almost regular permutation(ARP) interleaver has been included as a part of specification, however it seems that the interleaver is not optimized in terms of decoding performance. In this paper, we propose three optimization methods for the interleaver based on spatial distance, spread and minimum distance between original and interleaved sequence. We find optimized interleaving parameters for each optimization method and evaluate the performances of the proposed methods by computer simulation under additive white Gaussian noise(AWGN) channel. Optimized parameters can provide up to 1.0 dB power gain over the conventional method and furthermore the obtainable gain does not require any additional hardware complexity.

  • PDF