• Title/Summary/Keyword: ARIMA 모델

Search Result 82, Processing Time 0.019 seconds

Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models (SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측)

  • Oh, In-Jeong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.191-209
    • /
    • 2022
  • This paper is a review of studies that focus on the prediction of a won/dollar exchange rate before and after the covid 19 pandemic. The Korea economy has an unprecedent situation starting from 2021 up till 2022 where the won/dollar exchange rate has exceeded 1,400 KRW, a first time since the global financial crisis in 2008. The US Federal Reserve has raised the interest rate up to 2.5% (2022.7) called a 'Big Step' and the Korea central bank has also raised the interested rate up to 2.5% (2022.8) accordingly. In the unpredictable economic situation, the prediction of the won/dollar exchange rate has become more important than ever. The authors separated the period from 2015.Jan to 2022.Aug into three periods and built a best fitted ARIMA/ARDL prediction model using the period 1. Finally using the best the fitted prediction model, we predicted the won/dollar exchange rate for each period. The conclusions of the study were that during Period 3, when the usual relationship between exchange rates and economic factors appears, the ARDL model reflecting the variable relationship is a better predictive model, and in Period 2 of the transitional period, which deviates from the typical pattern of exchange rate and economic factors, the SARIMA model, which reflects only historical exchange rate trends, was validated as a model with a better predictive performance.

The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction (데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로)

  • Chun, Se-Hak
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.239-251
    • /
    • 2019
  • Statistical methods such as moving averages, Kalman filtering, exponential smoothing, regression analysis, and ARIMA (autoregressive integrated moving average) have been used for stock market predictions. However, these statistical methods have not produced superior performances. In recent years, machine learning techniques have been widely used in stock market predictions, including artificial neural network, SVM, and genetic algorithm. In particular, a case-based reasoning method, known as k-nearest neighbor is also widely used for stock price prediction. Case based reasoning retrieves several similar cases from previous cases when a new problem occurs, and combines the class labels of similar cases to create a classification for the new problem. However, case based reasoning has some problems. First, case based reasoning has a tendency to search for a fixed number of neighbors in the observation space and always selects the same number of neighbors rather than the best similar neighbors for the target case. So, case based reasoning may have to take into account more cases even when there are fewer cases applicable depending on the subject. Second, case based reasoning may select neighbors that are far away from the target case. Thus, case based reasoning does not guarantee an optimal pseudo-neighborhood for various target cases, and the predictability can be degraded due to a deviation from the desired similar neighbor. This paper examines how the size of learning data affects stock price predictability through k-nearest neighbor and compares the predictability of k-nearest neighbor with the random walk model according to the size of the learning data and the number of neighbors. In this study, Samsung electronics stock prices were predicted by dividing the learning dataset into two types. For the prediction of next day's closing price, we used four variables: opening value, daily high, daily low, and daily close. In the first experiment, data from January 1, 2000 to December 31, 2017 were used for the learning process. In the second experiment, data from January 1, 2015 to December 31, 2017 were used for the learning process. The test data is from January 1, 2018 to August 31, 2018 for both experiments. We compared the performance of k-NN with the random walk model using the two learning dataset. The mean absolute percentage error (MAPE) was 1.3497 for the random walk model and 1.3570 for the k-NN for the first experiment when the learning data was small. However, the mean absolute percentage error (MAPE) for the random walk model was 1.3497 and the k-NN was 1.2928 for the second experiment when the learning data was large. These results show that the prediction power when more learning data are used is higher than when less learning data are used. Also, this paper shows that k-NN generally produces a better predictive power than random walk model for larger learning datasets and does not when the learning dataset is relatively small. Future studies need to consider macroeconomic variables related to stock price forecasting including opening price, low price, high price, and closing price. Also, to produce better results, it is recommended that the k-nearest neighbor needs to find nearest neighbors using the second step filtering method considering fundamental economic variables as well as a sufficient amount of learning data.