• Title/Summary/Keyword: ARBOCEL

Search Result 5, Processing Time 0.016 seconds

Effect of crude fibre additives ARBOCEL and VITACEL on the physicochemical properties of granulated feed mixtures for broiler chickens

  • Jakub Urban;Monika Michalczuk;Martyna Batorska;Agata Marzec;Adriana Jaroszek;Damian Bien
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.274-283
    • /
    • 2024
  • Objective: The aim of the study was to evaluate the physicochemical properties (nutrient composition, pH, water content and activity, sorption properties) and mechanical properties (compression force and energy) of granulated feed mixtures with various inclusion levels of crude fibre concentrates ARBOCEL and VITACEL for broiler chickens, i.e. +0.0% (control group - group C), +0.3%, +0.8%, +1.0%, +1.2%. Methods: The feed mixtures were analyzed for their physicochemical properties (nutrient composition by near-infrared spectroscopy, pH with the use a CP-401 pH meter with an IJ-44C glass electrode, water content was determined with the drying method and activity was determined with the Aqua Lab Series 3, sorption properties was determined with the static method) and mechanical properties (compression force and energy with the use TA-HD plus texture analyzer). The Guggenheim-Anderson-de Boer (GAB) model applied in the study correctly described the sorption properties of the analyzed feed mixtures in terms of water activity. Results: The fibre concentrate type affected the specific surface area of the adsorbent and equilibrium water content in the GAB monolayer (p≤0.05) (significantly statistical). The type and dose of the fibre concentrate influenced the dimensionless C and k parameters of the GAB model related to the properties of the monolayer and multilayers, respectively (p≤0.05). They also affected the pH value of the analyzed feed mixtures (p≤0.05). In addition, crude fibre type influenced water activity (p≤0.05) as well as compression energy (J) and compression force (N) (p≤0.001) (highly significantly statistical) of the feed mixtures. Conclusion: The physicochemical analyses of feed mixtures with various inclusion levels (0.3%, 0.8%, 1.0%, 1.2%) of crude fiber concentrates ARBOCEL or VITACEL demonstrated that both crude fiber types may be used in the feed industry as a feedstuff material to produce starter type mixtures for broiler chickens.

Micronized Cellulose as a Paper Additive and a Carrier for Papermaking Chemicals

  • Ozersky, Alexander
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.05a
    • /
    • pp.33-55
    • /
    • 2007
  • This article portrays special cellulose fibers, which are designed to be a functional additive and a carrier for papermaking chemicals. The first part of the presentation deals with the micronized $ARBOCEL^{(R)}$ cellulose fibers, which are used as a functional paper/paperboard additive. In particular as a bulk and speed aid. The detailed description of the micronized $ARBOCEL^{(R)}$ fibers, their function and effects on papermaking process and paper products are given. The second part of the study describes the concept of fiber-based papermaking chemicals. A new generation of fiber-based papermaking chemicals were presented for the first time at the PTS Pulp Technology Symposium 2005, and then several articles were published in various magazine in Asia ("Paper Asia"), the US ("Pulp & Paper"). and Europe ("Wochenblatt fuel Papierfabrikation"). The information generated quite an interest in the paper industry. Extensive studies of these papermaking additives have been made recently, new information obtained, and the compounds have gained more recognition in the industry. The company J. Rettenmaier und Soehne developed a group of fiber-based papermaking additives. They include combination of fibers with sizing agents, starch, fluorochemicals, minerals, biocides and some others. This article presents in-depth study of the AKD modified micronized cellulose as an example of the fiber-based papermaking chemicals concept. The material of the present paper is based mostly on the results of the pilot paper machine study at the Paper Research Institute PTS (Heidenau, Germany), and includes case studies from the mills, which used $ARBOCELPLUS^{(R)}-AKD$ compounds. It should be noted that the $ARBOCELPLUS^{(R)}$ compounds were not designed to replace traditional additives in paper industry. They should rather be used in those areas, where application of "normal" chemicals is especially problematic

  • PDF

Effects of Polymer Coated Micro pulp on Paper Properties (고분자 코팅 처리된 마이크로 펄프가 종이 물성에 미치는 영향)

  • Son, Dong-Jin;Kim, Hak-Sang;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • Commercial micro pulps(Arbocel) were coated with three kinds of polymers using spray method. These coated micro pulps were used to papermaking additives to evaluate retention, drainage and physical properties of paper. The retention and drainage were improved with addition of polymer coated micro pulp. The bulk index of paper was also increased, but tensile and tear strength were decreased slightly, probably due to weakening of internal bonding. These results showed that the use of polymer coated micro pulp was an effective method to improve retention, drainage and bulk index of paper.

Effect of Branch Degree of Cationic Acrylamide Copolymers on Flocculation Properties

  • Son, Dong-Jin;Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • Three kinds of cationic acrylamide copolymer with different branch degree were prepared controlling the dosage of N, N'-methylenebisacrylamide. The physical characteristics of the branch-degree-modified copolymers were analyzed by intrinsic viscosity and charge density. The branch degree measurements were investigated by applying the colloidal titration phenomena using a spectrophotometer and comparison with the cationic regain measurement method. The results showed that the absorbance behaviors of spectrophotometer were distinctively different with the branch degree of copolymers. Also, the branch degree determinations and molecular structure estimations of the copolymers were numerically measured by applying the titration phenomena using a spectrophotometer. Finally, three kinds of branch-degree-modified copolymers were applied to flocculation test using arbocel micro pulp for the determination of flocculation behavior by different morphology of cationic acrylamide copolymers.