• Title/Summary/Keyword: AQUATIC ECOSYSTEM

Search Result 556, Processing Time 0.025 seconds

Analysis of Water Quality and Aquatic Ecosystem Improvement Effect According to TMDL in Jinwi River Watershed (진위천수계의 오염총량관리에 따른 수질 및 수생태계 개선 효과 분석)

  • Im, Jihyeok;Kong, Dongsoo
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.6
    • /
    • pp.355-360
    • /
    • 2021
  • As the domestic water management policy shifted from concentration-oriented water management to load management-centered Total Maximum Daily Load (TMDL), water quality and aquatic ecosystems brought changed. However, it was difficult to determine whether the water quality and the health of the aquatic ecosystem improved after the implementation of the TMDL due to changes in pollutant sources and discharge fluctuations ect, so the effect was analyzed using a log-linear model and biological indicators (Benthic Macroinvertebrates). As a result, BOD and T-P concentrations in the Jinwi River Watershed were reduced by 30% and 35%, showed the effect of improving water quality, however the benthic macroinvertebrates index (BMI) downgraded from grade D to grade E. Therefore, efforts to cultivate ecologicalrivers are necessary to upgrade the health of the aquatic ecosystem in the river watershed.

Effects of Climatic Regime Shift on the Structure of Marine Ecosystem in the Southwestern East Sea during the 1970s (남서부 동해에서 1970년대의 기후체제전환이 생태계의 구조에 미친 영향)

  • ZHANG Chang Ik;YOON Sang Cheol
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.389-401
    • /
    • 2003
  • The changes in structure and abundance of taxon or species groups in the East Sea ecosystem were compared between pre- and post-Climatic Regime Shift (CRS) occurred in the mid 1970s using an ECOPATH model. Although the East Sea ecosystem consisted of primary producers, primary consumers, secondary consumers and terminal consumers most species groups were classified as secondary consumers. The mean trophic level between pre- and post-CRS increased from 3.09 during the pre-CRS period to 3.28 during the post-CRS period. Total biomass of the species groups in the East Sea ecosystem increased by $9\%$ due to the CRS, and total catch increased by $48\%.$ The most significant differences between pre- and post-CRS models occurred at the mid/high trophic levels occupied by fishes and cephalopods. Relative contribution of the different species groups to the total energy flow was calculated for the trophic level III. As a result, the status by the dominant species in the East Sea ecosystem shifted from cephalopods to walleye pollock due to the CRS. Relative contribution of 5 species, which were commercially important, such as Pacific saury, Pacific sardine, filefish, walleye pollock and sandfish in trophic level III, were also changed due to the CRS. Finally, the CRS turned out to cause large variations in biomass and catch of fisheries resources as well as the status and role of the major species.

Consideration on Environmentally Friendly Erosion Control Strategy for Conservation of Stream Valley Ecosystem (I) (계류생태계 보전을 고려한 환경친화적 사방 전략(I))

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.67-75
    • /
    • 2002
  • This study was carried out to introduce current status to discuss erosion control strategy for the conservation of stream valley ecosystem. To restore stream valley ecosystem, we should establish restoration plans to keep the original shape of stream. It is necessary to use environmentally sound materials with conservation of valley stability. Valley construction for erosion control works should be evaluated continuously based on concepts of conservation and development of stream valley ecology. It is categorized in point of the important of class of stream valley conservation ahead planning and constructure. We suggest that the development of stream valley construction needs to prevent mass movement of soil sediments. In addition, it is established the basal strategy to protect macro and micro aquatic organisms in stream valley ecosystem.

Health Evaluation and Fish Population Analysis by Using LEHA (Lentic Ecosystem Health Assessment) Model (LEHA 모델을 이용한 어류군집 특성 분석 및 건강성 평가)

  • Han, Seock-Jung;Kim, Bong-Rae;Cha, Jun-Seong;Kang, Kyoung-Ho;Jung, Min-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.6
    • /
    • pp.1185-1192
    • /
    • 2014
  • Health assessment of aquatic ecosystem was investigated by using LEHA (Lentic Ecosystem Health Assessment) model method with habitat fish population structure analysis in this study. The investigation was two comparison spots (St 1; floating island, St 2; 500 m away site from st 1) in the Habcheon lake of Korea. As results, health evaluation of Habcheon lake ecosystem was fair grade of LEHA scores base on metric values in both place (30 score in st. 1 and 32 score in st. 2).

Priority Determination of the Projects for Ecological Restoration of the Stream : Case Study for Han River Estuary (생태하천 복원사업 우선순위 선정에 대한 연구: 한강하구를 중심으로)

  • Seonuk Baek;Junhak Lee;Seungmin Lee;Haneul Lee;Hung Soo Kim;Soojun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.64-73
    • /
    • 2023
  • Before 2022, there was a lot of confusion in the process of planning and implementing the projects for ecological restoration of the stream due to dualization the principal agent of stream management. Because the Ministry of Environment took charge of the project in 2022, securing the health of aquatic ecosystem of stream became an essential factor in the project. Therefore, in this study, the streams that require the project for ecological restoration was selected in Han River estuary, where it is essential to secure the health of the stream aquatic ecosystem as blackish water zone and Ramsar wetland are located. Physical, chemical, spatial/humanistic, health of aquatic ecosystems evaluation indexes were calculated based on the detailed facts and figures of the project for ecological restoration of the stream in the beginning. Ranking, re-scaling, z-score, and t-score normalization methods were applied to the calculated evaluation index, and the values were compared and analyzed. After that, the entropy weight method was applied to each evaluation index. Through this process, the streams(Mokgamcheon, Anyangcheon etc.) that require the project for ecological restoration were selected for the purpose of securing the health of the aquatic ecosystem in Han River estuary. The result of this study can be used as basic research data in the process of selecting the priority determination of the projects for ecological restoration of the stream.

Assessment of polluted factors in aquatic environment using near infrared spectroscopy

  • Norio, Sugiura;Zhang, Yansheng;Wei, Bin;Zhang, Zhenya;Isoda, Hiroko;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1272-1272
    • /
    • 2001
  • Eutrophication processes of aquatic environment are strictly correlated with the concentration levels of nitrogen, phosphorous, organic matter and biological parameters such as phytoplankton and chlorophylla (Tremel, 1996; Burns et al., 1997; Young et al. 1999; Wei et al.,2000). Accordingly, the monitoring and evaluation of these factors will provide useful information about the health of aquatic ecosystem. However, the traditional types of auqatic chemistry analysis and ecological monitoring of phytoplankton are time-consuming, costly, and further resulting in secondary pollution due to the use of reagents. NIR (near-infrared) spectroscopy, as a rapid, non-destructive, little sample preparation and reagents-free technology (Hildrum et al., 1992), has been extensively applied to the characterization of food (Osborne and Fearn, 1988), pharmaceutical (Morisseau and Rhodes, 1995) and textile materials (Clove et al.,2000). Currently, NIR technology has been used indirectly in inferring lake water chemistry by two approaches, suspended (Malley et al., 1996) or seston (Dabakk et al., 1999), and sediments (Korsman et al., 1992; Malley et al., 1999). In addition, the evaluation of trophic state and the identification of the key factors contributed to the trophication are the key step to restore the damaged aquatic environment. Moreover, an understanding of the factors, which regulate the algal proliferation, is crucial to the successful management of aquatic ecosystem. In the paper, NIR technology will be used to study the environmental factors affecting the algal proliferation in combination with the trophic state index and diversity index. This novel developed system can be applied in monitoring and evaluating allopathic water environment and provide real time information services for the aquatic environment management.

  • PDF

Seasonal Variation of Phytoplankton in the East Sea Using A Surface Mixed Layer Ecosystem Model (표층혼합층 생태계모델을 이용한 동해 식물플랑크톤의 계절변화)

  • KIM Sang Woo;ISODA Yutaka;AZUMAYA Tomonori
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Seasonal variation of phytoplankton was investigated with surface mixed layer ecosystem model in the East Sea. The model consisted of four compartments (phytoplankton, zooplankton, nutrient, detritus) forced by mixed layer depths, photosynthetically available radiation and nutrient concentrations. From model results we estimated entrainment rate $2.5-4.0\;m{\cdot}day^{-1}$ to reproduce the two annual blooms, and reproduced seasonal variation of phytoplankton at southern and northern regions by the difference of surface winter mixed layer depth (MLD) using the entrainment rate value $3.0\;m{\cdot}day^{-1}$. The spring blooms in the southern and northern regions closely related to deepening of a winter surface MLD. In the southern region where MLD was shallow and phytoplankton spring bloom occurs one month in advance to the northern region where MLD was deep. The amount of light increases within the MLD during the onset of stratification and water temperature increases faster in spring in the southern region than the northern region. Decrease of phytoplankton was mainly affected by zooplankton grazing in the southern region and by nutrient exhaustion in the northern region. The fall bloom in the two regions was caused by the nutrient availability and entrainment on the phytoplankton.

A Quantative Population Dynamic Model for Estimating Damages in Fishery Production in the Benthic Ecosystem of Abalone Culture Grounds (전복양식장 저서생태계의 훼손으로 인한 어업자원의 생산감소량 추정 모델)

  • KANG Yong Joo;ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.409-416
    • /
    • 2003
  • Marine populations are maintained through the processes of spawning, growth, recruitment, natural death and fishing in a marine ecosystem. Based upon each of these processes, a quantitative population dynamic model was developed to estimate damages in fishery production due to accidents in a fishing ground. This model was applied for the abalone culture grounds in Korean waters. Three components of damages were identified in the ecosystem of the abalone culture grounds, namely, physical damages in the substratum of the fishing ground, biological damages in the structure and function of the ecosystem, and damages in fishery production. Considering these three components the processes and durations of damages in fishery production were determined. Because the abalone population is composed of multiple year classes, damages influence all the year classes in the population, when they occur The model developed in this study is: $$y=(n_{\lambda}+1){\times}Y_E\;-\;\sum\limits^{n_\lambda-n_c}_{l=0}\;y_{n_c/i}$$ where, y is the expected damages in fishery production during the period of restoration of the damaged abalony population, $Y_E$ is the annual equilibrium yield, $n_{\lambda}$ is the maximum age in the population, $t_s$ is the year of damage occurrence, $n_c$ is the age at recruitment, and $\sum\limits^{n_\lambda-n_c}_{l=0}\;y\;_{n_c/i}$ is total expected lifetime catch of year classes which were recruited during the restoration period.