• Title/Summary/Keyword: AQUACULTURE

Search Result 4,211, Processing Time 0.024 seconds

Design and Performance of a Laboratory Scale Closed Seawater Recirculating System for Korean Rockfish Sebastes schlegeli Culture Part 1. Design of the Closed Seawater Recirculating System

  • Lei Peng;Oh, Sung-Yong;Jo, Jae-Yoon
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.125-125
    • /
    • 2003
  • Recirculating aquaculture systems consist of different treatment compartments that maintain water quality within the ranges of commonly recommended for fish culture. This paper presents the common considerations in designing different treatment compartments as well as the engineering criteria in designing closed recirculating aquaculture system including a circular tank for fish culture, a sedimentation basin and a foam fractionator for solids removal, two styrofoam bead filters for TAN removal, a sand filter for nitrate removal, and aerators. The main purpose is to outline a common procedure in designing of closed recirculating aquaculture system for marine fish culture.

  • PDF

Mathematical Model of Aquaculture Facility Utilization (양식장 이용에 대한 수학적 모형)

  • Eh, Youn-Yang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.2
    • /
    • pp.444-454
    • /
    • 2014
  • The range of optimization problem in aquaculture is very wide, resulting from the range of species, mode of operation. Quite a few studies focus marine net-cages, but studies on land based culture farm are few or no. This paper considers a allocation problem to meet production planning in land based aquaculture system. A water pool allocation model in land based aquaculture system was developed. The solution finds the value of decision variable to minimize yearly production costs that sums up the water pool usage cost and sorting cost. The model inputs were (1) the fish growth rate (2) critical standing corp (3) number of water pool (4) number of fish. The model outputs were (5) number of water pool in growing phase (6) cost of cultivation (6) optimal facility allocation(number of water pool for each growing phase). To solve the problem, an efficient heuristic algorithm based on a greedy manner is developed. Branch and bound and heuristic is evaluated through numerical examples.

The Relationship between Climatic and Oceanographic Factors and Laver Aquaculture Production (기후 및 해양 요인과 김 생산량과의 관계에 관한 연구)

  • Kim, Do-Hoon
    • The Journal of Fisheries Business Administration
    • /
    • v.44 no.3
    • /
    • pp.77-84
    • /
    • 2013
  • While some steps in laver aquaculture production can be controlled artificially to a certain extent, the culturing process is largely affected by natural factors, such as the characteristics of seawater, climatic and oceanographic conditions, etc. This study aims to find a direct relationship between climatic and oceanographic factors (water temperature, air temperature, salinity, rainfall, sunshine duration and wind speed) and laver aquaculture production in Wando region, the biggest aquaculture production area of laver, located in the southwest coast of Korea using a multiple regression analysis. Despite the small sample size of a dependent variable, the goodness of model fit appeared acceptable. In addition, the R-squared value was 0.951, which means that the variables were very explanatory. Model results indicated that duration of sunshine, temperature, and rainfall during the farming period from the end of September to the end of April would be important factors affecting significantly to the laver aquaculture production.

Ordering Model of Fingerlings in Aquaculture Farm (치어 주문모형에 관한 연구)

  • Eh, Youn-Yang;Song, Dong-Hyo
    • The Journal of Fisheries Business Administration
    • /
    • v.48 no.3
    • /
    • pp.47-59
    • /
    • 2017
  • Fish mortality is the most important success factor in aquaculture management. To order fingerlings considering the effect of mortality is a important problem in aquaculture farm. This study is aimed to decision the number and size of fry in aquaculture farm. This study build the mathematical model that finds the value of decision variable to minimize total cost that sums up the fingerling purchasing cost, aquaculture farm operating cost and feeding cost under mortality constraint. The proposed mathematical model involve biological and economical variables: (1) number of fingerlings (2) fish growth rate (3) mortality (4) price of a fry (5) feeding cost, and (6) possible order period. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

An Empirical Study for Development of Onshore Gim (Pyropia yezoensis) Aquaculture System (육상 김 양식 시스템 개발을 위한 실증화 연구)

  • Oh, Ho-Dong;Oh, Seung-Seob;Shin, Hwa-Soo;Shin, Heung-Sop
    • The Journal of Fisheries Business Administration
    • /
    • v.51 no.2
    • /
    • pp.15-24
    • /
    • 2020
  • As a first step in obtaining the minimum level of data needed to develop smart cultivation technology for Korean seaweed gim (Pyropia yezoensis), farming tests have been carried out using onshore aquaculture facilities. The aquaculture facility was built on paddy farmland on the west coast of Chungnam and received seawater from nearby sea. In this paper, we report the overall process and results of the aquaculture trials attempted in Korea's first onshore gim aquaculture facilities. In addition, the industrial possibility of gim production using the onshore aquaculture system will be discussed through the analysis of all expenses incurred in the test form.

Cost Analysis Model according to Mortality in Land-based Aquaculture (육상수조 어류양식 생존율에 따른 비용분석모형)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.47 no.4
    • /
    • pp.1-13
    • /
    • 2016
  • Fish mortality is the most important success factor in aquaculture management. To analyze the effect of mortality considering biological and economic condition is a important problem in land-based aquaculture. This study is aimed to analyze the effect of mortality for duration of cultivation in land-based aquaculture. This study builds the mathematical model that finds the value of decision variable to minimize cost that sums up the water pool usage cost, sorting cost, fingerling cost and feeding cost under critical standing corp constraint. The proposed mathematical model involves many aspects, both biological and economical: (1) number of fingerlings (2) timing and number of batch splitting event, based on (3) fish growth rate, (4) mortality, and (5) several farming expense. Numerical simulation model presented here in. The objective of numerical simulation is to provide for decision makers to analyse and comprehend the proposed model. When extensive biological and cost data become available, the proposed model can be widely applied to yield more accurate results.

Mooring loads analysis of submersible aquaculture cage system using finite element method

  • Kim, Tae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • The expansion of near shore aquaculture is feasibility of moving aquaculture facilities into the open ocean. Numerical modeling technique using finite element method was used to enable the optimum design and evaluation of submersible aquaculture cage system. The characteristics of mooring loads response in mooring lines under waves and current and their response amplitude operators were calculated for single and three point mooring configuration at the surface condition and submerged one. The static mooring loads without wave and current loading were similar for both the surface and submerged configuration. It was calculated that three point mooring was more adequate than single point mooring for the mooring configuration of submersible aquaculture cage system. The wave induced response amplitude operators for the single point mooring configuration with the influence of currents were identical to those without the influence of currents.

The Need of Biofilter for Ammonia Removal in Recirculating Aquaculture System

  • Harwanto, Dicky;Jo, Jae-Yoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • With the world's population increase, demands of fish production increased rapidly. Because of the demand increase, methods of aquaculture also become more intense. With the increasing intensity of aquaculture, more metabolites in the system are accumulated. The metabolites accumulated in the system turn to the causatives of water quality deterioration and become limiting factors for fish growth. Due to the toxicity of ammonia, ammonia removal is needed in aquaculture system. Biofilters, often referred as biological filter or nitrification filter are commonly used in recirculating aquaculture system to remove ammonia and convert it to nitrite, and then to nitrate.

  • PDF

Cryopreservation of Semen in Dead Yellow Croaker, Larimichthys polyactis

  • Lim, Han-Kyu;Min, Byung-Hwa;Jeong, Min-Hwan;Choi, Byul-Nim;Le, Minh Hoang;Chang, Young-Jin
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.350-353
    • /
    • 2010
  • This study demonstrated that cryopreserved semen from dead fish can be used for seedling production. Yellow croakers, Larimichthys polyactis, were killed and stored at temperatures of $20^{\circ}C$ or $0^{\circ}C$ for 6 hours. At 2 hour intervals, semen from these fish was collected using abdominal pressure and evaluated for spermatozoa motility and semen cryopreservation. Semen collected after 6 hours from dead fish stored at $0^{\circ}C$ could be cryopreserved and attained fertilization and hatching rates of $15.0{\pm}1.2%$ and $14.8{\pm}1.6%$, respectively. This study suggests that germ cells such as the semen of dead fish can be cryopreserved and utilized in the restoration of a species.

Productivity of Aquaculture Facility Utilization (양식장 이용에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Fish stocking is important element of land-based aquaculture management. To maintain constant stocking rate considering biological and economic condition is a convenient strategy in intensive aquaculture. This study is aimed to analyze the effect of over-stocking(more than aquaculture capacity) for certain periods of time. This study make the mathematical decision making model that finds the value of decision variable to minimize cost that sums up the water pool usage cost and sorting cost under critical standing corp constraint. The proposed mathematical decision making model was applied to 12 sample combination of sorting cost and the number of fish on the Oliver flounder culture farms. If a immature fish can be sold for high price than farming cost, restricted over-stocking resulted in a improvement of economic performance. When extensive comparable biological and market data become available, analysis model can be widely applied to yield more accurate results.