• 제목/요약/키워드: APV(Adaptive Phase/Doppler Velocimetry)

검색결과 3건 처리시간 0.015초

모델연소기 선회유동장에서의 속도 및 분무특성 (Velocity and Spray Characteristics under Swirl Flows in a Model Combustor)

  • 배충식;이동훈
    • 한국분무공학회지
    • /
    • 제3권2호
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

모델연소기에서의 분사기와 선회기의 영향 (The Effects of Injector and Swirler on the Flame Stability in a Model Combustor)

  • 박승훈;이동훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1998년도 제17회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.9-21
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air, and the combustion stability in the gas turbine combustor design for the reduction of pollutant emissions and the increase of combustion efficiency. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. The effect of fuel injection nozzle was tested by adopting three different nozzles; a dual orifice fuel nozzle, a hollow cone nozzle and a solid cone nozzle. These tests were combined with the three different swirler geometries; a dual-stage swirler with 40$^{\circ}$ /-4 5$^{\circ}$ vanes and two single-stage swirlers with 40$^{\circ}$ vane angle having 12 and 16vanes, respectively. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-PtI3%Rh, R-type thermocouple which was 0.2mm thick. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the combination between the injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF