• 제목/요약/키워드: APRC

검색결과 2건 처리시간 0.019초

가축분뇨 공동자원화시설 관리운영 실태조사 (A Survey on Present Conditions of Operational Management in the Animal Manure Public Resource Center)

  • 김두환;하덕민;신용환
    • 한국축산시설환경학회지
    • /
    • 제19권2호
    • /
    • pp.169-176
    • /
    • 2013
  • This survey was conducted to investigate the present conditions of operational management in the 45 animal manure public resource center (APRC) in Korea. The regional distribution, processing capacity per year, capacity of liquid fertilizer storage tank, solid-liquid separation, utilization of facilities, odor reduction facility, on-site odor strength, complained in the community, liquid fertilizer sprayed area, use the Agrix, land application recipe, composting degree, quality management and general grading were surveyed and evaluated. General grading was divided with 5 stages (very good, good, fair, lack and bad). The number of evaluated "very good" animal manure public resource center was 7, and "good" was 5 and more than "fair" was 27. However, the number of evaluated negatively including "lack" and "bad" was occupied as 40% of the 45 animal manure public resource center.

Kalina 사이클의 효율 향상 방안 및 성능 비교 (Improvement of Efficiency of Kalina Cycle and Performance Comparison)

  • 윤정인;손창효;최광환;손창민;설성훈;이호생;김현주
    • 한국태양에너지학회 논문집
    • /
    • 제35권5호
    • /
    • pp.11-19
    • /
    • 2015
  • In this paper, EP-Kalina cycle applying liquid-vapor ejector and motive pump is newly proposed. In this EP-Kalina cycle, the liquid-vapor ejector is used to increase pressure difference between inlet and outlet of the turbine. Also the motive pump enhances the performance of liquid-vapor ejector, resulting in increase of system efficiency of OTEC cycles. The comparison cycles in this study are basic, Kalina, EKalina and EP-Kalina ones. The pump work, net power, APRe, APRc, TPP and system efficiency of each cycle are compared. In case of net power, EP-Kalina cycle is lowest among the cycles due to the application of the motive pump. But, the net power difference of cycles seems to be minor since the pump work of cycles is merely about 1kW, compared to turbine gross power of 20kW. The system efficiency of EP-Kalina cycle shows 3.22%, relatively 44% higher than that of basic OTEC cycle. Therefore, the system efficiency is increased by applying the liquid-vapor ejector and the motive pump. Additional performance analysis is necessary to optimize the proposed EP-Kalina cycle.