• Title/Summary/Keyword: API kit

Search Result 189, Processing Time 0.027 seconds

Antibiotic Susceptibility of Vibrio spp. Isolated from West Sea (서해안에서 분리한 비브리오균의 항생제 감수성 특성)

  • Kang, Chang-Ho;Oh, Soo Ji;So, Jae-Seong
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.146-149
    • /
    • 2013
  • Bacteria of genus Vibrio are Gram-negative, curved, halophilic, nonspore-forming bacteria, autochthonous inhabitans of the marine and estuarine environments. Some of the Vibrio species such as V. parahaemolyticus, V. vulnificus, and V. cholerae are associated with human disease. Each year many people have been suffering from food-borne disease caused by the ingestion of seafood. In this study, we have monitored antibiotic resistance of this microorganism in 6 coastal areas of West Sea by sampling shellfish monthly. Vibrio spp. were detected from 23.3% of 120 samples analyzed using TCBS agar plates as well as API 20E kit. Among 16 antibiotics tested, resistance to vancomycin and ampicillin was observed in 82.1% of the isolates, and Vibrio spp. resistant to rifampin (71.4%) and cephalothin (53.6%) were also high. Most of the isolates were sensitive to chloramphenicol (92.9%), sulfamethoxazole/trimethoprim (92.9%), and tetracycline (96.4%). About 71.4% of the isolates showed multiple drug resistance toward 3 antibiotics including vancomycin and ampicillin.

Study on Arduino Kit VR contents modularization based on virtualization technology in software education field (소프트웨어교육 현장에서 가상화 기술에 기반한 아두이노 키트 VR콘텐츠 모듈화 연구)

  • Park, Jong-Youel;Chang, Young-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.293-298
    • /
    • 2018
  • In the fourth industrial revolution era triggered by the popularization of smart phones, Human daily life and all industrial sites are becoming software and intelligent. With the universal software education for all students nationwide from 2018, Demand is surging, and hardware is interlocked using software technology and Arduino. However, expensive control boards and dozens of different electronic components have to be prepared separately and problems are occurring. In addition, if the same training is repeated, Significantly many parts are lost or destroyed. Being prepared to start a new class is also becoming a very serious problem. In this study, we implement VR technology based on virtualization technology of Arduino board and various electronic parts. In addition, 3D graphics realistic Arduino kit and various electronic components are provided in API form. In this paper, we propose a method of interworking software and virtual hardware on virtualization base.

Identifications of Predominant Bacterial Isolates from the Fermenting Kimchi Using ITS-PCR and Partial 16S rDNA Sequence Analyses

  • CHIN HWA SUP;BREIDT FRED;FLEMING H. P.;SHIN WON-CHEOL;YOON SUNG-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.68-76
    • /
    • 2006
  • Despites many attempts to explore the microbial diversity in kimchi fermentation, the predominant flora remains controversial to date. In the present study, major lactic acid bacteria (LAB) were investigated in Chinese cabbage kimchi in the early phase of fermention. For the samples over pH 4.0, viable cell counts of Leuconostoc and Pediococcus were $10^6\;cfu/ml$ and below $10^2\;cfu/ml$, respectively, and 20 isolates out of 172 were subjected to a biochemical identification (API 50 CH kit) as well as molecular-typing methods including ITSPCR with a RsaI digestion and 16s rRNA gene sequence analysis for species confirmation. Seven isolates were nicely assigned to Lb. brevis, 6 to Leuconostoc spp. (2 mesenteroides, 2 citreum, I carnosum, I gasicomitatum), 4 to Weissella (3 kimchii/cibaria, 1 hanii) and 2 to other Lactobacillus spp. (1 farciminis, 1 plantarum). On the other hand, the biochemical identification data revealed 9 strains of Lb. brevis, 6 strains of Leuconostocs,2 strains of Lb. plantarum and 1 strain each of Lb. coprophilus and Lactococcus lactis. However, a single isolates, YSM 16, was not matched to the ITS-PCR database constructed in the present study. Two Lb. brevis strains by API 50 CH kit were reassigned to W kimchii/cibaria, Lb. coprophilus or W hanii, respectively, judging from the results by the above molecular typing approaches. As a whole, the identification data obtained by the biochemical test were different from those of ITS-PCR molecular method by about $63\%$ at genus-level and $42\%$ at species-level. The data by the ITS-PCR method conclusively suggest that predominant LAB species is probably heterolactic Lb. brevis, followed by W kimchii/cibaria, Leuc. mesenteroides, and Leuc. citreum, in contrast to the previous reports [3] that Leuc. mesenteroides is the only a predominant species in the early phase kimchi fermentation.

E. faecalis and E. faecium Isolated in Dried Marine Products (시판 건해산물에서 분리한 Enterococcus faecalis와 E. faecium의 미생물학적 특성)

  • Ham, Hee-Jin
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.294-299
    • /
    • 2007
  • Eighty seven strains were isolated from 164 dried marine products(dried squid and dried alaska pollack etc) in Seoul Garak wholesale market. Among 87 isolates, twenty four E. faecalis and 4 E. faecium were identified by API strep kit. Twenty eight strains of E. faecalis, and E. faecium were resistant in streptomycin (95.6%), kanamycin (84.5%), gentamycin (66.7%), cephaloxin (97.8%), ampicillin/sulbactam (88.9%), ticarcillin(66.7%), amikacin (97.8%), sulfonamides (97.8%), ceftriaxone (75.6%), nalidixic acid (100.0%), and cefoxitin (100.0%), and were susceptible in amoxicillin/clavulanic acid(97.8%), chloramphenicol(95.6%), sulfamethoxazole/trimethoprim (97.8%), and tetracycline (71.1%). Also, ten strains of E. faecalis was resistant in $S-K-GM-CF-SAM-TIC-An-S_3-CRO-NA-FOX$ drugs simultaneously. Conclusively, E. faecalis strains from dried marine products were resistant on antibiotic drugs residue.

Potential Probiotic Properties of Laetoeoeeus laetis NK34 Isolated from Jeotgal

  • Lee, Na-Kyoung;Noh, Ji-Eun;Choi, Gui-Hun;Park, Eun-Ju;Chang, Hyo-Ihl;Yun, Cheol-Won;Kim, Seung-Wook;Kang, Chang-Won;Yoon, Yoh-Chang;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.843-847
    • /
    • 2007
  • Strain NK34 was characterized for probiotic use. Strain NK34 was named Lactococcus lactis NK34 based on API 50 CHL kit results and 16S rDNA sequencing. L. lactis NK34 was highly resistant to artificial gastric juice (pH 2.5) and artificial bile acid. Based on results from the API ZYM kit, 4 enzymes were produced. L. lactis NK34 was resistant to all antibiotics tested except for $10\;{\mu}g/mL$ roxithromycin and $10\;{\mu}g/mL$ erythromycin. The cholesterol-lowering effect of L. lactis NK34 was about 46.9%. Concentrations of interleukin $(IL)-1{\alpha}$ in the $20{\times}$ concentrated supernatant of L. lactis NK34 was about 361 pg/mL. L. lactis NK34 was also found to inhibit the growth of colon cancer cells due to MNNG-induced DNA damage. These results demonstrate the potential of L. lactis NK34 as a health-promoting probiotic.

Isolation of Enterobacter Cloacae Producing Phytase and Medium Optimization of Its Production (Phytase를 생산하는 Enterobacter cloacae의 분리 및 효소 생산의 배지 최적화)

  • 송민동;김영훈;양시용;김대영;김창원;정원형;권문남
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2001
  • Phytase (myo-inositol hexakisphosphate phosphohydrolase: EC 3.1.3.8) hydrolyzes phytic acid (myo-inositol hexakisphosphate) to myo-inositol and monophosphates. In order to obtain phytase producing bacteria, many samples were collected from various soils. Among thirty-five phytase-producing strains, YH100 showed the highest phytase activity. In order to identify the selected YHlOO strain, the morphological and physiological characteristics were examined according to the method of Bergey's manual by 168 rRNA sequence, cellular fatty acids profile, O+C contents and physiological test using API 20E kit. The strain YH100 identified to be a genus of Enterobacter cloacae and was named as Enterobacter cloacae YHlOO. Optimum medium for the phytase production by the Entemhacter c!o([we YHlOO was composed of 2.0%(w/v) glucose, 1.0%(w/v) peptone, 1.0%(w/v) beef extract, 0.1 %(w/v) KCI. and 0.1 %( w/v) sodium phytate.

  • PDF

Isolation and Identification of Lactic Acid Bacteria Inhibiting Gastro-intestinal Pathogenic Bacteria of Domestic Animal. (가축 소화기 병원성 세균을 저해하는 유산균의 분리 및 동정)

  • Lee, Jae-Yeon;Hwang, Kyo-Yeol;Kim, Hyun-Soo;Kim, Geun;Sung, Soo-Il
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • To isolate probiotic lactic acid bacteria having superior inhibitory activities against animal gastro-intestinal pathogenic bacteria such as Salmonella gallinarum, Staphylococcus aureus and Escherichia coli, 130 strains were initially isolated from the small intestines of Korean native chickens and 7 lactic acid bacteria were finally selected. By using API CHL kit and 16S rRNA sequencing method, the selected lactic acid bacteria were found to be belonged to genus Lactobacillus except BD14 identified as Pediococcus pentosaceus. Especially, Lactobacillus pentosus K34 showed the highest resistancy to both of HCl and bile salt, as well as the highest inhibitory activities against S. gallinarum, S. aureus and E. coli. All the selected strains were sensitive to various antibiotics such as neomycin, erythromycin, cephalosporin, amoxicillin/clavulanic acid, ampicillin, oxytetracycline, but resistant to ciprofloxacin. All the selected strains except BL strain were resistant to colistin and streptomycin, and BD14, BD16, K34 strains were resistant to gentamicin.

Screening of Lactobacilli Derived from Chicken Feces and Partial Characterization of Lactobacillus acidophilus A12 as Animal Probiotics

  • Lee, Na-Kyoung;Yun, Cheol-Won;Kim, Seung-Wook;Chang, Hyo-Ihl;Kang, Chang-Won;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.338-342
    • /
    • 2008
  • This study was performed to screen and select Lactobacillus strains from chicken feces for probiotic use in animals. Of these strains, strain AU had the highest immunostimulatory effect. Therefore, strain A12 was characterized as a potential probiotic. Strain A12 was tentatively identified as Lactobacillus acidophilus A12, using the API 50 CHL kit based on a 99.9% homology. L. acidophilus A12 was highly resistant to artificial gastric juice (pH 2.5) and bile acid (oxgall). Based on results from the API ZYM kit, leucine arylamidase, crystine arylamidase, acid phosphatase, naphthol-AS-BI-phosphohydrolase, ${\alpha}$-galactosidase, ${\beta}$-galactosidase, ${\alpha}$-glucosidase, ${\beta}$-glucosidase, and N-acetyl-${\beta}$-glucosamidase were produced by strain A12. L. acidophilus A12 showed resistance to several antibiotics (nisin, gentamicin, and erythromycin). The amount of interleukin $(IL)-1{\alpha}$ in $20{\times}$ concentrated supernatant from L. acidophilus A12 was approximately 156pg/ml. With regard to antioxidant activity, L. acidophilus A12 supernatant showed 60.6% DPPH radical scavenging activity. These results demonstrate the potential use of L. acidophilus A12 as health-promoting probiotics.

Isolation and Identification of Plant-Growth-Promoting Bacteria and Their Effect on Growth of Red Pepper(Capsicum annuum L.) (식물생육촉진(植物生育促進) 세균(細菌) 분리(分離), 동정(同定)과 고추에 대한 처리효과(處理效果))

  • Lee, Young-Han;Yun, Han-Dae;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • This study was conducted to determine the effect of treatment with the plant-growth-promoting bacteria on the growth of red pepper(Capsicum annuum L.).The eight plant-growth-promoting bacteria were isolated from the humic soil in the forest region. The isolated bacteria(IB) was identified by the method of the biochemical test(API kit) and the composition of the fatty acid(MIDI system).The IBs were inoculated by spray of 17ml at 72 cell tray filled with peatmoss every week. respectively, with mixed liquid eulture of eight strains. The IBs were identified as Micrococcus sp.. Bacillus subtilis. Enterobacter agglomerans, Bacillus megaterium, Pseudomonas putida. Pseudomonas fluorescens, Xanthomonas maltophilia and Staphylococcus xylosus by API kit and MIDI system. The plant height number of leaves and leaf length of red pepper grown on peatmoss treated with the IB were better than those of nontreatment at the 10th day after inoculation.

  • PDF

Biochemical and Molecular Identification of Antibacterial Lactic Acid Bacteria Isolated from Kimchi (김치에서 항균활성 유산균의 분리 및 동정)

  • Kim, Soo-Young;Kim, Jong-Doo;Son, Ji-Soo;Lee, Si-Kyung;Park, Kab-Joo;Park, Myeong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.446-452
    • /
    • 2011
  • Total 480 lactic acid-producing bacteria were isolated from five kinds of kimchi, and their antibacterial activity was tested against Salmonella enterica serovar Typhimurium, Bacillus subtilis, and Pseudomonas aeruginosa using an agar diffusion assay. Among them, 340 isolates showed a halo on MRS agar against one or more indicator strains, which were identified using multiplex PCR, an API 50CHL kit, and a 16S rDNA sequence analysis. As a result, 169 Lactobacillus plantarum, 20 Lactobacillus fermentum, two Lactobacillus paracasei ssp. paracasei, two Lactobacillus sp., and 15 Pediococcus sp. were identified. This may be the first report on the isolation of antibacterial Lactobacillus fermentum from kimchi.