• Title/Summary/Keyword: APDL

Search Result 63, Processing Time 0.028 seconds

A Study on CAD/CAE Integration for Design Optimization of Mold Cooling Problem (CAD와 유한요소해석을 연계한 금형 냉각문제의 설계최적화에 대한 연구)

  • 오동길;류동화;최주호;김준범;하덕식
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 2004
  • In mechanical design, optimization procedures have mostly been implemented solely by CAE codes combined by optimization routine, in which the model is built, analyzed and optimized. In the complex geometries, however, CAD is indispensable tool for the efficient and accurate modeling. This paper presents a method to carry out optimization, in which CAD and CAE are used for modeling and analysis respectively and integrated in an optimization routine. Application Programming Interface (API) function is exploited to automate CAD modeling, which enables direct access to CAD. The advantage of this method is that the user can create very complex object in Parametric and automated way, which is impossible in CAE codes. Unigraphics and ANSYS are adopted as CAD and CAE tools. In ANSYS, automated analysis is done using codes made by a script language, APDL(ANSYS Parametric Design Language). Optimization is conducted by VisualDOC and IDESIGN respectively. As an illustrative example, a mold design problem is studied, which is to minimize temperature deviation over a diagonal line of the surface of the mold in contact with hot glass.

Application of FTM and RSM for the Design of Cold Backward Extrusion Dies (냉간 후방 압출 금형설계에 FTM과 RSM의 활용)

  • Yeo H.T.;Choi Y.;Song Y.S.;Hur K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.11a
    • /
    • pp.99-106
    • /
    • 2001
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die Insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

  • PDF

Shape Design Optimization of Ship Structures Considering Thermal Deformation and Target Shape (열 변형과 목적형상을 고려한 선체구조의 형상 최적설계)

  • Park, Sung-Ho;Choi, Jae-Yeon;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.430-437
    • /
    • 2010
  • In this paper, we develop a shape design optimization method for thermo-elastoplasticity problems that is applicable to the welding or thermal deformation problems of ship structures. Shell elements and a programming language APDL in a commercial finite element analysis code, ANSYS, are employed in the shape optimization. The point of developed method is to determine the design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of surfaces are selected as the design parameters. The modified method of feasible direction (MMFD) and finite difference sensitivity are used for the optimization algorithm. Two numerical examples demonstrate that the developed shape design method is applicable to existing hull structures and effective for the structural design of ships.

Design of Backward Extrusion Die by using Flexible Tolerance Method and Response Surface Methodology (FTM과 RSM을 이용한 후방 압출 금형 설계)

  • Hur Kwan Do;Yeo Hong Tae;Choi Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.167-174
    • /
    • 2005
  • The design for cold extrusion dies is very important, because the die insert is subjected to very high radial and hoop stresses. The design of cold extrusion dies has many constrained conditions. In this paper, the used assumptions are such that the yield strength of each ring is selected according to the allowable tensile or compressive hoop stress in each ring and the maximum allowable inner pressure, when yielding occurs in one ring of the dies, is obtained by the proposed equation. In order to obtain design variables, such as diameter ratios and interferences, using the maximum inner pressure, the flexible tolerance method was used for shrink-fitted thick-walled cylinders. ANSYS APDL was used to perform the repeated analysis of deformation of the dies due to the variation of the design variables. The response surface methodology is utilized to analyze the relationship between the design variables and the maximum radial displacement of the die insert during extrusion. From the results, it is found that outer diameter of the die insert has the largest effect on the minimization of maximum radial displacement at the inner surface of the dies.

Development of MR Mount for Vibration Control of Marine Diesel-Generator Set (박용 발전기세트 진동 제어용 MR 마운트 개발)

  • Kang, Ok-Hyun;Kim, Won-Hyun;Joo, Won Ho;Park, Jun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

On the mixed-mode crack propagation in FGMs plates: comparison of different criteria

  • Nabil, Benamara;Abdelkader, Boulenouar;Miloud, Aminallah;Noureddine, Benseddiq
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.371-379
    • /
    • 2017
  • Modelling of a crack propagating through a finite element mesh under mixed mode conditions is of prime importance in fracture mechanics. In this paper, two crack growth criteria and the respective crack paths prediction in functionally graded materials (FGM) are compared. The maximum tangential stress criterion (${\sigma}_{\theta}-criterion$) and the minimum strain energy density criterion (S-criterion) are investigated using advanced finite element technique. Using Ansys Parametric Design Language (APDL), the variation continues in the material properties are incorporated into the model by specifying the material parameters at the centroid of each finite element. In this paper, the displacement extrapolation technique (DET) proposed for homogeneous materials is modified and investigated, to obtain the stress intensity factors (SIFs) at crack-tip in FGMs. Several examples are modeled to evaluate the accuracy and effectiveness of the combined procedure. The effect of the defects on the crack propagation in FGMs was highlighted.

Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process (반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석)

  • Kim, Dong Woohn;Song, Jonghyeong;An, Seungdo;Woo, Kisuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

Contact Stress Analysis of Stick Type Ignition Coil Jacket PBT (Stick Type Ignition Coil Jacket PBT의 접촉응력해석)

  • Kim Yangsul;Kim Namsu;Lee Jongseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.45-50
    • /
    • 2005
  • Stick type ignition coil(called a Cigar coil) is a kind of transformer for an automobile modulaized of distributer and electric cable. A material of cigar coil is PBT $GF30\%$ resin. This is an excellent engineering plastic with both mechanical and electrical properties. When we insert an HV terminal into the PBT $GF30\%$ resin jacket, it breaks the jacket, because the HV terminal is bigger than the jacket. It is a fatal on durability of a part. In this study, We used ANSYS FEM tool in order to stress analysis by contact. In order to automatically estimate possible maximum diameter of an HV terminal, we used an APDL. In the contact part, we considered the relation of the HV terminal's diameter with the amount of stress that occurred. This relation is able to be applied, in part, to the dimensions of the part design.

Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading

  • Wang, Lixiao;Chen, Qidong;Liu, Xin;Zhang, Bin;Shen, Yichen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2020
  • Concrete are the most widely used manmade materials for infrastructure construction across the world. These constructions gradually aged and damaged due to long-term use. However, there does not exist an efficient concrete recycling method with low energy consumption. In this study, concrete was regarded as a heterogeneous material composed of coarse aggregate and cement mortar. And the failure mode of concrete under ultrasonic dynamic loading was investigated by finite element (FE) analysis. Simultaneously, a 3D random aggregate concrete model was programmed by APDL and imported into ABAQUS software, and the damage plastic constitutive model was applied to each phase to study the damage law of concrete under dynamic loading. Meanwhile, the dynamic damage process of concrete was numerically simulated, which observed ultrasonic propagating and the concrete crushing behavior. Finally, the FE simulation considering the influence of different aggregate volume and aggregate size was carried out to illustrate the damage level of concrete.

Automation of Fatigue Durability Analysis for Welded Bogie Frame Using a Multi-Agent Based Engineering Framework (멀티 에이전트 기반 엔지니어링 프레임워크를 이용한 용접대차틀 피로내구해석의 자동화)

  • Bang, Je-Sung;Han, Seung-Ho;Lee, Jai-Kyung;Park, Seong-Whan;Rim, Chae-Whan;Song, See-Yeob
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.308-320
    • /
    • 2007
  • A multi-agent and web based engineering framework concerning the automation of fatigue durability analysis for welded bogie frame of railway vehicles is presented. Mostly, this kind of design or analysis includes complex workflow, huge amounts of information processing, and problem solving. Macro programs of I-DEAS, APDL of ANSYS, and in-house fatigue code are utilized for parametric geometry representation, automatic mesh generation, static stress analysis, fatigue durability analysis, post-processing, and data sorting. The engineering framework is implemented on the JADE. Since every task requires a fairly complex process and specialized knowledge, the multi-agent based framework is very useful to keep the independency among several disciplines or tasks and to use distributed hardware and software resources. All engineering programs are integrated by XML wrapper. Related database of the engineering framework and web based user interfaces are also developed. A parametric study is carried out to take into account the effect of geometrical change of transom support bracket on its cumulative fatigue damage. The developed engineering framework reduced remarkably the time and costs required in designing and solving engineering problems.