• Title/Summary/Keyword: AP 추진제

Search Result 82, Processing Time 0.021 seconds

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.61-65
    • /
    • 2005
  • In HTPB/AP propellants, zirconium(Zr) addition to formulation was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

  • PDF

Combustion Characteristics of HTPB/AP/Zr Propellant (HTPB/AP/Zr 추진제의 연소 특성)

  • Min Byoung-Sun;Hyun Hyung-Soo;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.9-16
    • /
    • 2005
  • Zirconium(Zr) addition to formulation of HTPB/AP propellants, was shown to be less specific impulse than aluminum(Al) by the theoretical calculation because of the lower flame temperature and higher molecular weight of Zr oxide. It was found that the burning rate was faster with the finer size of Zr and the more content of $2{\mu}m$ Zr the faster burning rate is in HTPB/AP/Zr propellants caused by the more conduction energy transfer from Zr flame to the burning surface. Also the burning rate of HTPB/AP/Zr propellant could be reduced by addition of 150nm Al, depending on AP size distribution in formulation with Butacene and $1{\mu}m$ AP.

Time to ignition analysis of AP composite propellant induced by thermal loading (열 하중에 의한 AP 추진제의 발화특성 연구)

  • Kim, Ki-Hong;Lee, Kyung-Cheol;Gwak, Min-Cheol;Kim, Yong-Hyeon;Doh, Young-Dae;Kim, Chang-Kee;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.207-210
    • /
    • 2009
  • The AP/HTPB composite propellant is a common choice for solid rocket propulsion. The externally heated rocket via fires, for instance, can cause the energetic substance to ignite, and this may lead to a thermal runaway event marked by a severe explosion. In order to develop preventive measures to reduce the possibility of such accidents in propulsion systems, we investigate the ignition and initiation properties of AP/HTPB propellant.

  • PDF

Time to ignition analysis of AP/HTPB composite propellant (열 하중에 의한 AP/HTPB 복합추진제의 발화특성 모델링 연구)

  • Jung, Tae-Yong;Kim, Hyung-Won;Do, Young-Dae;Yoo, Ji-Chang;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-282
    • /
    • 2008
  • The AP/HTPB composite propellant is a common choice for solid rocket propulsion. The externally heated rocket via fires, for instance, can cause the energetic substance to ignite, and this may lead to a thermal runaway event marked by a severe explosion. In order to develop preventive measures to reduce the possibility of such accidents in propulsion systems, we investigate the ignition and initiation properties of AP/HTPB propellant.

  • PDF

Combustion Properties of PCP/Nitramine/AP Propellants (PCP/Nitramine/AP 기반 추진제의 연소 특성 연구)

  • Kim, Sung June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.12-18
    • /
    • 2021
  • This study aimed at preparing the solid propellants featuring high pressure exponent available for throttleable rocket system development. The combustion properties of solid propellant based on PCP as a prepolymer were investigated with the different nitramine oxidizer, HMX and HNIW. As a main oxidizer, HNIW could deliver higher burning rate, specific impulse and flame temperature than HMX. In addition, the introduction of AP as a co-oxidizer in PCP/Nitramine propellants could enhance burning rate, specific impulse and flame temperature, showing the lower pressure exponent with increasing the content of fine-sized AP, total solids and plasticizer. Moreover, we examined the temperature sensitivity on burning rate of propellants between 150 psia and 2,500 psia.

Fuel-rich Combustion with AP added Propellant in a Staged Hybrid Rocket Engine (다단 하이브리드 로켓에서 AP 첨가 추진제의 연료과농 연소)

  • Lee, Dongeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.576-584
    • /
    • 2016
  • In this study, AP added propellant has been proposed as a method of enhancing the low specific impulse performance found for staged hybrid rocket engine. Experimental tests were carried out to analyze and evaluate the effect of AP added propellant on specific impulse performance as well as fuel-rich combustion characteristics in a staged hybrid rocket engine. Upper limit of AP content in propellant was set to be 15 wt% to maintain the hybrid rocket engine advantages. As a result, 15 wt% AP added propellant showed 3% higher specific impulse performance compared to 0 wt% AP added propellant. Moreover, AP addition proved to offer less injected oxidizer mass flow, less O/F variation, and less combustion pressure while producing fuel-rich gas of the same combustion temperature. Future studies will carry out more combustion tests with metal additives to further enhance specific impulse.

Ignition of Solid Propellants at Subatmospheric Pressures (대기압 이하에서 고체 추진제의 점화 특성 향상 연구)

  • Kim In-Chul;Ryoo Baek-Neung;Jung Jung-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.383-386
    • /
    • 2006
  • Several HTPB/AP and HTPB/AP/HMX propellants were investigated experimentally for ignition characteristics in subatmospheric pressure. The threshold ignition pressure was 4psia for HTPB/AP composite propellant. The partial replacement of AP in HTPB/AP composite propellant by $5\sim15%$ of HMX, HNIW showed improvements in the threshold pressure was below 0.4psia. This appears to be due to the exothermic dissociation characteristics of HMX and HNIW at lower temperature $(\sim220^{\circ}C)$ than that of AP. The ignition substance B/KNO3 was coated thinly on the propellant surface for better ignition effect. As a result, ignition delay time of 15% was improved. NC is applied to $B/KNO_3$ ignition substance as a secondary binder and $NC-B/KNO-3$ suspension solution is coated to the propellant surface.

  • PDF

Coolant Effect on Gas Generator Propellant (가스발생기용 추진제에 대한 냉각제 효과)

  • Baek Gookhyun;Yim Yoo-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • The effect of coolants has been studied on the burning properties of low burning rate HTPB/AP composite propellant containing Oxamide or Melamine as coolant for the gas generator. With increasing the content of coolant, the burning rate and the flame temperature could be lowered and the effect on flame temperature was about the same for two coolants. However due to the different thermal decomposition properties of coolant, the burning rate of Melamine propellant was found to abnormally decrease if $200{\mu}m$ AP was partially replaced with $6{\mu}m$ AP.

Effect of FeOOH on Burn Rate for AP Propellant (AP계 추진제에서 황색산화철의 연소촉매 효과)

  • Yim, Yoo-Jin;Kim, Jun-Hyung;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.390-393
    • /
    • 2010
  • The thermal decomposition rate of ammonium perchlorate with 3% of yellow iron oxide, FeOOH was found to be much faster than with red iron oxide, $Fe_2O_3$. By applying yellow and red iron oxide as a burning rate modifier to HTPB/AP propellant, burning rate of the HTPB/AP propellant with yellow iron oxide was shown to be 10 ~ 25% faster than with red iron oxide. There was no special difference in viscosity and hardness buildup of yellow and red oxide added HTPB/AP formulations.

  • PDF

Properties of HTPB/AP/Butacene propellants (HTPB/AP/Butacene 추진제 특성 연구)

  • Kim Chang-Kee;Yoo Ji-Chang;Hwang Gab-Sung;Yim Yoo-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.75-78
    • /
    • 2005
  • The present work has been studied to investigate the effect of formulation on friability of HTPB/AP propellants including Butacene and $Cr_{2}O_3$. The mechanical properties and burning rate of the propellants were measured using Inston tensile tester and strand burner, respectively. Friability was calculated by shot-gun and closed bomb test. The result showed that friability was higher, as the content of Butacene or AP $6{\mu}m$ in the propellant formulations was increased.

  • PDF