• 제목/요약/키워드: AOX 1

검색결과 28건 처리시간 0.022초

Cloning of the dextranase gene(lsd11) from Lipomyces starkeyi and its expression in Pichia pastoris.

  • Park, Ji-Young;Kang, Hee-Kyoung;Jin, Xing-Ji;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Won;Kim, Do-Man
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVII)
    • /
    • pp.644-648
    • /
    • 2005
  • Dextranase (${\alpha}$-1,6-D-glucan-6-glucanogydrolase:E.C. 3.2.1.11) catalyzes the hydrolysis of ${\alpha}$-(1.6) linkages of dextran. A lsd1 gene encoding an extracellular dextranase was isolated from the genomic DNA of L. starkeyi. The lsd11 gene is a synthetic dextranase (lsd1) after codon optimization for gene expression with Pichia pastoris system. A open reading frame of lsd11 gene was 1827 bp and it was inserted into the pPIC3.5K expression vector. The plasmid linearized by Sac I was integrated into the 5'AOX region of the chromosomal DNA of P. pastoris. The lsd11 gene fragment encoding a mature protein of 608 amino acids with a predicted molecular weight of 70 kDa, was expressed in the methylotrophic yeast P. pastoris by controling the alcohol oxidase-1 (AOX1) promoter. The recombinant lds11 was optimized by using the shake-flask expression and upscaled using fermentation technology. More than 9.8 mg/L of active dextranase was obtained after induction by methanol. The optimum pH of LSD11 was found to be 5.5 and the optimum temperature $28^{\circ}C$.

  • PDF

Pichia pastoris와 Escherichia coli를 이용한 Candida antarctica Lipase A의 기능적 발현 (Functional Expression of Candida antarctica Lipase A in Pichia a pastoris and Escherichia coli)

  • 박혜정;김용환
    • KSBB Journal
    • /
    • 제24권4호
    • /
    • pp.341-346
    • /
    • 2009
  • 본 연구에서는 Candida antarctica로부터 genomic DNA을 추출하여 lipase A(CalA) 유전자를 PCR 증폭하였고, 재조합 pColdIII/CalA, $pPICZ{\alpha}A$/CalA, $pPICZ{\alpha}A$/CalA$his{\times}6$을 구축하였다. 재조합 CalA 유전자의 기능적 발현을 위해 최적화된 시스템을 구축하고자 Escherichia coli와 Pichia pastoris 시스템에서 각각 수행하여 비교, 분석하였다. SDS PAGE gel을 통해 CalA의 발현의 여부 및 발현양을 확인하였고, pNPP를 기질로 한 가수분해 반응을 통해 활성을 측정하였다. E. coli 발현 시스템은 형질전환 방법이 간단하고, 미생물의 성장 속도가 빠르다는 장점을 갖지만 CalA의 활성이 0.02 Unit/ml으로 비교적 낮았으며 세포질 (cytoplasm)에서 발현되므로 비목적 단백질과의 분리 및 정제과정이 필요하다. 재조합 $pPICZ{\alpha}A$/CalA을 P. pastoris 시스템에서 발현한 경우 높은 발현양 뿐만 아니라 분비작용으로 인해 고순도 발현이 용이하였고, 활성 또한 약 0.7 Unit/ml으로 가장 높았다. 결론적으로 CalA의 기능적 발현을 위해 P. pastoris 시스템을 구축하는 것이 가장 적합함을 확인하였다.

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Methylotrophic Yeast를 이용한 외래단백질 발현에서의 발효 변수 최적화 (The Optimization of Fermentation Parameters for Heterologous Protein Productivity Enhancement with Pichia pastoris)

  • 강환구;이문원;전희진
    • KSBB Journal
    • /
    • 제13권3호
    • /
    • pp.325-330
    • /
    • 1998
  • The methylotrophic yeast, Pichia pastoris, is known to be a potential host to offer many advantages for production of recombinant proteins. Fermentation parameters were optimized to enhance the heterologous ${\beta}$-galactosidase productivity with P. pastoris. Optimum concentration of methanol, used as inducer, was observed to be 8 g/L and the extent of repression of AOX1 promoter by glycerol was lower than by glucose. The degradation of the gene product ${\beta}$-galactosidase by protease was inhibited as the pH increased from 5 to 8 and the yeast extract(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%) as nitrogen source increased expression level 4 times higher compared to yeast nitrogen base(1%). Induction method, in which methanol is just added to fermentation medium without centrifugation, was found to be as much effective as the one with centrifugation.

  • PDF

Pichia pastoris에서 Zobellia galactanivorans 유래 재조합 $\beta$-Agarase의 고효율 분비생산 (High-level Secretory Expression of Recombinant $\beta$-Agarase from Zobellia galactanivorans in Pichia pastoris)

  • 석지환;박희균;이상현;남수완;전숭종;김종현;김연희
    • 한국미생물·생명공학회지
    • /
    • 제38권1호
    • /
    • pp.40-45
    • /
    • 2010
  • Agarose의 $\beta$-1,4결함을 분해하는 Zobellia galactanivorans 유래의 $\beta$-agarase 유전자(agaB)는 클로닝 되었고, AOX1(alcohol oxidase 1, methanol inducible) promoter 하류에 Saccharomyces cerevisiae mating factor alpha-1 secretion signal($MF{\alpha}1$)를 연결하여 $MF{\alpha}1$-AgaB를 구축하였다. 구축된 plasmid pPIC-AgaB(9 kb)를 Pichia pastoris genome에 HIS4 gene 위치에 integration하였고, colony PCR을 통해 확인하였다. Methanol 첨가 배지에서 자란 형질전환체는 iodine solution의 첨가에 의해 red halos를 보였으며, P.pastoris에서 agaB의 효율적 분비 발현을 확인하였다. SDS-PAGE와 zymographic analysis에서 $\beta$-agarase의 분자량은 약 53 kDa으로 추정되었으며, 15% 정도의 N-linked glycosylation이 일어났음을 알 수 있었다. P.pastoris GS115/pPIC-AgaB의 48시간 baffled flask culture에서 세포외 $\beta$-agarase의 활성은 각각 0.1, 0.5, 1% methanol의 유도에 의해 1.34, 1.42 그리고 1.53 units/mL의 활성을 보였다. 대부분의 $\beta$-agarase의 활성은 세포 외에서 관찰되었고, 분비효율은 98%였으며 분비시의 glycosylation에 의해 열안정성도 증가되었다.

Optimization of the Functional Expression of Coprinus cinereus Peroxidase in Pichia pastoris by Varying the Host and Promoter

  • Kim, Su-Jin;Lee, Jeong-Ah;Kim, Yong-Hwan;Song, Bong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.966-971
    • /
    • 2009
  • Peroxidase from Coprinus cinereus (CiP) has attracted attention for its high specific activity and broad substrate spectrum compared with other peroxidases. In this study, the functional expression of this peroxidase was successfully achieved in the methylotrophic yeast Pichia pastoris. The expression level of CiP was increased by varying the microbial hosts and the expression promoters. Since a signal sequence, such as the alpha mating factor of Saccharomyces cerevisiae, was placed preceding the cDNA of the CiP coding gene, expressed recombinant CiP (rCiP) was secreted into the culture broth. The Mut Pichia pastoris host showed a 3-fold higher peroxidase activity, as well as 2-fold higher growth rate, compared with the $Mut^s $ Pichia pastoris host. Furthermore, the AOX1 promoter facilitated a 5-fold higher expression of rCiP than did the GAP promoter.

Hansenula polymorpha와 Pichia pastoris의 비교를 통한 회분식 배양에서의 효과적인 재조합단백질 발현방법에 관한 연구 (The Study on the Effective Expression Strategy for Recombinant Protein Production with Pichia pastoris and Hansenula polymorpha)

  • 강환구;김재호;전희진
    • KSBB Journal
    • /
    • 제14권4호
    • /
    • pp.482-489
    • /
    • 1999
  • As host for the production of eucaryotic heterologous proteins, methylotrophic yeast Pichia pastoris and Hansenula polymorpha are the most highly developed of a small group of alternative yeast species chosen for their perceived advantages. This paper describes the method to enhance the recombinant protein productivity with P. pastoris and H. Plymorpha. In these experiments, the effects of methanol induction timing, induction method, pH, culture temperature and kinds of nitrogen sources on foreign protein production were tested with P. pastoris and compared with H. polymorpha.. In addition, optimum methanol concentration as inducer and the effects of carbon sources on AOX1 or MOX promoter repression and secretion efficiency were also studied in both cases.

  • PDF

Cloning of a Gene Encoding Dextranase from Lipomyces starkeyi and its Expression in Pichia pastoris

  • Kang, Hee-Kyoung;Park, Ji-Young;Ahn, Joon-Seob;Kim, Seung-Heuk;Kim, Do-Man
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권2호
    • /
    • pp.172-177
    • /
    • 2009
  • A gene(lsd1) encoding dextranase from Lipomyces starkeyi KSM22 has been previously cloned, sequenced, and expressed in Saccharomyces cerevisiae. The gene consisting of 1,824 base pairs and encoding a protein of 608 amino acids was then cloned into and secretively expressed in Pichia pastoris under the control of the AOX1 promoter. The dextranase productivity of the P. pastoris transformant(pPIC9K-LSD1, 134,000 U/I) was approximately 4.2-fold higher than that of the S. cerevisiae transformant(pYLSD1, 32,000 U/I) cultured in an 8-1 fermentor. Over 0.63 g/l of active dextranase was secreted into the medium after methanol induction. The dextranase of the P. pastoris transformant, as analyzed by SDS-PAGE and Western blotting, showed only one homogeneous band. This dextranase of the P. pastoris transformant showed a broad band near 73 kDa. Rabbit monoclonal antibodies against a synthetic LSD1 peptide mix also recognized approximately 73 kDa.

Pichia pastoris에서 메탄올 유도시 첨가물이 재조합 HBsAg 생산에 미치는 영향 (Effect of Various Additives on the Production of Recombinant HBsAg during Methanol Induction in Pichia pastoris)

  • 이경훈;임상민;김동일
    • KSBB Journal
    • /
    • 제21권4호
    • /
    • pp.260-266
    • /
    • 2006
  • 본 연구에서는 P. pastoris를 이용한 유전자 재조합 HBsAg 생산에서 메탄올 유도시 여러 가지 첨가물들의 영향에 대해서 알아보았다. 회분식 배양에서 탄소원으로 글리세롤을 사용하다가 유가식 배양의 공급 탄소원으로 글리세롤이 아닌 당알콜인 sorbitol로 대체하였을 때 단백질 발현이 향상된 결과를 보였다. 또한 메탄올 유도시에 적당량의 아미노산 혼합물 첨가는 세포증식에는 영향이 없었지만 단백질 발현율은 크게 증가시켰다. 계면활성제인 Trition X-100의 첨가는 세포증식과 단백질 발현을 현저히 감소시켰지만, Pluronic F-68를 첨가했을 경우 세포증식의 저해영향 없이 단백질 발현율을 향상시켰다. 배지 부피의 0.01%(v/v)으로 oleic acid를 첨가하면 플라스크 배양에서는 단백질 발현에 긍정적인 효과를 보였으나, 5 L 발효조 배양에서는 메탄올 유도 시간이 지속되면서 첨가하지 않은 경우에 비해 발현율이 낮아지는 결과를 보였다. 마지막으로 trace salts는 첨가량에 따라 세포증식에는 영향이 없으며 단백질 발현에는 소량 trace salts 첨가로 단백질 발현에 긍정적인 효과를 보였다. 하지만 첨가량이 많아질수록 단백질 발현에는 부정적인 영향을 보임을 확인할 수 있었다.

Arsenite Oxidation by Bacillus sp. Strain SeaH-As22w Isolated from Coastal Seawater in Yeosu Bay

  • Chang, Jin-Soo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • 제15권1호
    • /
    • pp.15-21
    • /
    • 2010
  • This study was conducted to evaluated seawater bacteria and their seasonal characteristics in the arsenic contaminated coastal seawater of Yeosu Bay, the Republic of Korea. Arsenite-oxidizing bacteria play an important role in the seawater of the arsenic contaminated bay, with a variety of arsenic resistance system (ars) genotypes being present during summer. Specifically, Bacillus sp. strain SeaH-As22w (FJ607342), isolated from the bay, were found to contain the arsB, arrA and aoxR type operons, which are involved in arsenic resistance. The isolated bacteria showed relatively high tolerance to sodium arsenite (III; $NaAsO_2$) at concentrations as high as 50 mM. Additionally, batch seawater experiments showed that Bacillus sp. strain SeaH-As22w completely oxidized 1 mM of As (III) to As (V) within 10 days. Ecologically, the arsenic-oxidizing potential plays an important role in arsenic toxicity and mobility in As-contaminated coastal seawater of Yeosu Bay during all seasons because it facilitates the activity of Bacillus sp. groups.