• Title/Summary/Keyword: ANTHROPOGENIC DISTRIBUTION

Search Result 187, Processing Time 0.029 seconds

Estimation of the Temporal and Spatial Distribution of Anthropogenic Heat in Daegu (대구지역 인공열의 시공간적 분포 추정에 관한 연구)

  • 안지숙;김해동;홍정혜
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1045-1054
    • /
    • 2002
  • Urban atmospheric conditions are usually settled as warmer, drier and dirtier than those of rural counterpart owing to reduction of green space and water space area heat retention in surfaces such as concrete and asphalt, and abundant fuel consumption. The characteristics of urban climate has become generally known as urban heat island. The purpose of this study is to investigate the temporal and spatial distribution of the heat emission from human activity, which is a main factor causing urban heat island. In this study, the anthropogenic heat fluxes emitted from vehicles and constructions are estimated by computational grid mesh which is divided by 1km $\times$ 1km. The anthropogenic heat flux by grid mesh can be applied to a numerical simulation model of the local circulation model. The constructions are classified into 9 energy-consumption types - hospital, hotel, office, department store, commercial store, school, factory, detached house and flat. The vehicles classified into 4 energy-consumption types - car, taxi, truck and bus. The seasonal mean of anthropogenic heat flux around central Daegu exceeded $50 W/m^2$ in winter. The annual mean anthropogenic heat flux exceeded $20 W/m^2$. The values are nearly equivalent to the anthropogenic heat flux in the suburbs of Tokyo, Japan.

Study on Estimation of Urban Anthropogenic Heat Generation (도시의 인공열 산정에 관한 연구)

  • 손은하;김유근;홍정혜
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.1
    • /
    • pp.37-47
    • /
    • 2000
  • The Urban thermal environment is influenced and modified in many ways. One modification is brought by the anthropogenic heat generation emitted from the combustion processes and the use of energy such as industrial, domestic and traffic procedure. The anthropogenic heat generation affect an the increase of urban temperature, the well-known urban heat islands. The study on the urban thermal environment needs a great deal of the statistic data about the inner-structure of urban, the contribution of different constructions and the traffic amount on urban thermal environment in finite region. In order to overtake a quantitative analysis of effect of the anthropogenic heat, a distribution map of the urban anthropogenic heat was made using hte data of the energy consumption used at the several constructions and traffic amount of vehicles in Pusan Metropolitan. Annual mean heat flux over the 4$\textrm{km}^2$ urbanized area in Pusan is 41.5W/$m^2$, ranging from 31.4W/$m^2$ in summertime to 59.5W/$m^2$ in wintertime and maximum diurnal anthropogenic heat generation is corresponding to 10% of irradiance during summertime.

  • PDF

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

Density Distributions of Metallic Compounds in Particulate Matters (粒子狀 物質中 金屬成分의 密度分布)

  • 허문영;김형춘;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF

Survey of Antibiotic Resistant Bacteria in Lake Gyeongpo, Korea (경포호의 항생제 내성 세균 조사)

  • Dukki Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The emergence and spread of antibiotic-resistant bacteria have been increasing with anthropogenic contamination. Understanding the prevalence and distribution of these resistant bacteria in environments is crucial for effectively managing anthropogenic pollutants. Lake Gyeongpo in the Gangwon Province of South Korea is known for its diverse ecological features and human interactions. The lake is exposed to pollutants from nonpoint sources, including urban areas, agricultural practices, and recreational activities, which can introduce antibiotics and foster antibiotic resistance in bacteria. The present study investigates Lake Gyeongpo as a potential reservoir for antibiotic-resistant bacteria in a natural ecosystem. A total of 203 bacterial isolates were collected from six sampling locations in Lake Gyeongpo during May, July, and November 2022. Most isolates were taxonomically identified as Pseudoalteromonas, Bacillus, Shewanella, and Vibrio spp.; their abundance showed a spatiotemporal distribution. An antibiotic susceptibility test was conducted on 75 isolates using the disk diffusion method with six drugs according to the CLSI guideline; 42 isolates were resistant to one or more antibiotics. Among these, 15 isolates were identified as multidrug resistant bacteria. This finding suggests the potential anthropogenic impact on Lake Gyeongpo and provides valuable insights into the dissemination of antibiotic resistance caused by anthropogenic pollutants.

Characteristics of Anthropogenic Soil Formed from Paddy near the River

  • Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hyun, Byung-Keun;Kim, Keun-Tae;Lee, Chang-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2016
  • Anthropogenic soil in cropland is formed in the process of subsoil reversal and the refill of soil into cropland. However, there was little information on the chemical properties within soil profiles in anthropogenic soil under rice paddy near the river. In this study, we investigated the chemical properties within soil profiles in the anthropogenic soil located at 4 sites in Gumi, Kimhae, Chungju, and Euiseong to compare with the natural paddy soil near the river. Among particle sizes, the sand content decreased under soil profiles but the silt and clay contents increased compared to the natural paddy soil in soil profiles. Organic matter content in topsoil of anthropogenic soil was lower than in that of natural soil, which was shown the contrary tendency within soil profiles. Also, the soil pH, available $P_2O_5$, and exchangeable cations were higher in anthropogenic soil compared to natural paddy soil at topsoil, which was maintained these tendency into soil depth. Nutrients may be equally distributed in anthropogenic soil during the process of refill in paddy soil near the river. This results indicated that anthropogenic soil would contribute to carbon sequestration, the mitigation of compaction, and reduction of fertilizer application in paddy soil. Therefore, characteristics of anthropogenic soil can be used for the soil management in cropland.

Studies of Ambient BTEX Distribution Characteristics in the Nan-Ji-Do Landfill Site in Seoul (난지도를 중심으로 한 대기 중 BTEX 성분의 농도분포 특성에 대한 연구)

  • 김기현;김민영;오상인;윤중섭;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.6
    • /
    • pp.463-474
    • /
    • 2001
  • In this study, the concentrations of major anthropogenic volatile organic compounds(VOCs) which include benzene, toluene, m, p-xylene, o-xylene, and ethylbenzene were measured at the Nan-ji-do landfill site during the spring and fall season of 2000. the temporal distribution characteristics of these VOCs were investigated over varying time scale. According to our study, the mean concentration of those species were computed to be 1.65$\pm$2.68(benzene), 9.62$\pm$9.32(toluene), 1.84$\pm$2.90(m, p-xylene), 0.83$\pm$1.43(o-xylene), and 1.17$\pm$1.21 ppb(ethylbenzene). The VOCs levels in the study area are not distinctively higher than the level typically found in urban area that can be subject to the influence of various anthropogenic source processes. Inspection of their temporal trends exhibited various patterns for the diurnal(and seasonal) cycle. Although each species showed distinctive patterns in temporal distribution trends, we were able to find the strong correlations among most concurrently measured VOCs except for benzene.

  • PDF

Estimation of Air Pollutant Emissions for the Application of Photochemical Dispersion Model in the Seoul Metropolitan Area (광화학 확산모델 적용을 위한 수도권지역의 대기오염물질 배출량 산출)

  • 이종범;김용국;김태우;방소영;정유정
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • An air pollutant emission inventory system for the input preparations of photochemical dispersion model was developed. Using the system, anthropogenic emissions as well as biogenic emissions in the Seoul metropolitan area were calculated. Anthropogenic emission by fuel combustion using regional cosumption data, and the laundries and so forth was estimated. The biogenic emission was estimated based upon meteorological data and the distribution of land use type in the study area. The anthropogenic emission of pollutants was highest in Seoul, and the second highest in Inchon. TSP and $SO_2$ were found large quantities during the winter due to increased consumption of heating oil. NOx and THC were emitted without seasonal variation. Among biogenic emissions, PAR was very common while NO was the least common. PAR, OLE, and ALD2 were emitted in large volumes in coniferous forest areas, while ISOP was emitted in deciduous forest areas. Generally, most biogenic emissions increased during daytime, and peaked between oen and two o'clock. Because of strong solar radiation, emission during the summer was high. Biogenic NO emissions were found to be lower compared to anthropogenic emissons, and other VOC was indicated relatively high. In the study area, among biogenic emissions PAR was found to be 3 times, OLE 8 times,and ALD2 12 times more common than among anthropogenic emissions.

  • PDF

Anthropogenic Fingerprint on Recent Changes in Typhoon Heavy Rainfall beyond Tipping-Point (최근 태풍 호우에서 보이는 인류세 지문의 변화: 임계점을 넘어서)

  • Hyungjun Kim;Nobuyuki Utsumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.87-87
    • /
    • 2023
  • The impact of climate change on typhoons is a major concern in East Asia, especially due to the destructive effects of heavy rainfall on society and the economy, as many megacities are located along coastal regions. Although observations suggest significant changes in typhoon heavy rainfall, the extent to which anthropogenic forcing contributes to these changes has yet to be determined. In this study, we demonstrate that anthropogenic global warming has a substantial impact on the observed changes in typhoon heavy rainfall in the western North Pacific region. Observation data indicates that, in general, typhoon heavy rainfall has increased (decreased) in coastal East Asia (tropical western North Pacific) during the latter half of the 20th century and beyond. This spatial distribution is similar to the "anthropogenic fingerprint" observed from a set of large ensemble climate simulations, which represents the difference between Earth systems with and without human-induced greenhouse gas emissions. This provides evidence to support the claim that the significant increase in the frequency of typhoon heavy rainfall along coastal East Asia cannot be solely explained by natural variability. In addition, our results indicate that the signal of the "anthropogenic fingerprint" has been increasing rapidly since the mid-1970s and departed from natural variability in the early 2000s, indicating that the regional summer climate has already crossed the tipping point.

  • PDF

Polychlorinated Biphenyls (PCBs) in the Bio-geochemistry of Oceans

  • Kannan, Narayanan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.201-208
    • /
    • 2007
  • Polychlorinated biphenyls (PCBs) are anthropogenic contaminants found globally in water, ice, soil, air and sediment. Modern analytical techniques allow us to determine these chemicals in environmental matrices at parts per trillion levels or lower. Environmental forensic on PCBs opens up new avenues of investigation such as transport and fate of water masses in oceans, sedimentation, onset of primary production, migration of marine mammals, their population distribution and pharmacokinetics of drugs inside organisms. By virtue of persistence, bioaccumulation, bioconcentration and structure-activity relationship PCBs emerge as unconventional chemical tracers of new sort.

  • PDF