• Title/Summary/Keyword: ANSYS simulation

Search Result 447, Processing Time 0.031 seconds

Estimation Process for the Capacity of Emergency Drainage System on a Ship after Flooding Accident (선박 침수사고를 대비한 비상용 배수시스템 용량추정 프로세스에 관한 연구)

  • PARK, Byung-Soo;KIM, Sung-Soo;LEE, Soon-Sup;KANG, Dong-Hoon;CHO, Hyun-Kuk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.6
    • /
    • pp.1739-1750
    • /
    • 2016
  • This paper proposed a process for estimating the required capacity of emergency drainage system on a ship when the ship encounters a flooding accident. The process was established by selecting target vessel, making a scenario of flooding accident, considering static behavior of flooding water and the effect of ship motion due to ocean condition. In order to obtain the object of the research, MATLAB codes were developed for analyzing of static behavior of flooding water. Additionally, Ansys AQWA-NAUT was used to analyze the motion of the ship under an ocean condition and then the effect of ship motion was considered when the static behavior of flooding water was studied. The research exploited a trawler as a target vessel, and estimate the necessary capacity of the trawler's emergency drainage system by simulating a flooding water in the vessel.

Flow Analysis around Multi-Legged Underwater Robot "Crabster" to Evaluate Current Loads (다관절 해저로봇 'Crabster'에 작용하는 조류하중 산정 및 유동해석)

  • Park, Yeon-Seok;Kim, Wu-Joan;Jun, Bong-Huan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, numerical simulations were performed to evaluate the current loads acting on the multi-legged underwater robot "Crabster" with a variety of incident angles using the ANSYS-CFX package. The Reynolds-averaged Navier-Stokes equations were solved to simulate the fluid flow around Crabster to calculate the forces and moments induced by incoming currents with various angles. First, to assess the posture stability of the body, the forces and moments were calculated with various incident angles when the current acted in the vertical and horizontal directions. Next, two forms of legs (box and foil types) were evaluated to determine the hydrodynamic force variation. Finally, the current forces and moments acting on the Crabster body with the legs attached were estimated.

Design, Fabrication and Performance Test of A Non-Vacuum Packaged Single Crystalline Silicon MEMS Gyroscope (대기압형 단결정 실리콘 MEMS 각속도계의 설계, 제작 및 성능 측정)

  • Jung, Hyoung-Kyoon;Hwang, Young-Seok;Sung, Woon-Tahk;Chang, Hyun-Kee;Lee, Jang-Gyu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1635-1636
    • /
    • 2006
  • In this paper, a non-vacuum packaged single crystalline silicon MEMS gyroscope is designed, fabricated and tested. To reduce air damping of the gyroscope structure for non-vacuum packaging, air damping model is used and damping is minimized by analysis. The inner and outer spring length is optimized by ANSYS simulation for rigid body motion. The gyroscope is fabricated by SiOG(Silicon On Glass) process. The performance of the gyroscope is measured to evaluate the characteristic of the gyroscope. The sensitivity, non-linearity, noise density and the bias stability are measured to 9.7693 mV/deg/s, 04265 %, 2.3 mdeg/s/rtHz and 16.1014 deg/s, respectively.

  • PDF

Optimal Design of Sheath Flow Nozzle Acceleration Section for Improving the Focusing Efficiency (집속효율 향상을 위한 외장유동노즐 가속 구간의 최적설계 연구)

  • Lee, Jin-Woo;Jin, Joung-Min;Kim, Youn-Jea
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.763-772
    • /
    • 2019
  • There is a need to use sheath flow nozzle to detect bioaerosol such as virus and bacteria due to their characteristics. In order to enhance the detection performance depending on nozzle parameters, numerical analysis was carried out using a commercial code, ANSYS CFX. Eulerian-lagrangian approach method is used in this simulation. Multiphase flow characteristics between primary fluid and solid were considered. The detection performance was evaluated based on the results of flow field in nozzle chamber such as focusing efficiency and swirl strength. In addition, Latin hypercube sampling(LHS) of design of experiment(DOE) was used for generating a near-random sampling. Then, the acceleration section is optimized using response surface method(RSM). Results show that the optimized model achieved a 6.13 % in a focusing efficiency and 11.47 % increase in swirl strength over the reference model.

Mechanical analysis of the bow deformation of a row of fuel assemblies in a PWR core

  • Wanninger, Andreas;Seidl, Marcus;Macian-Juan, Rafael
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.297-305
    • /
    • 2018
  • Fuel assembly (FA) bow in pressurized water reactor (PWR) cores is considered to be a complex process with a large number of influencing mechanisms and several unknowns. Uncertainty and sensitivity analyses are a common way to assess the predictability of such complex phenomena. To perform such analyses, a structural model of a row of 15 FAs in the reactor core is implemented with the finite-element code ANSYS Mechanical APDL. The distribution of lateral hydraulic forces within the core row is estimated based on a two-dimensional Computational Fluid Dynamics model with porous media, assuming symmetric or asymmetric core inlet and outlet flow profiles. The influence of the creep rate on the bow amplitude is tested based on different creep models for guide tubes and fuel rods. Different FA initial states are considered: fresh FAs or FAs with higher burnup, which may be initially straight or exhibit an initial bow from previous cycles. The simulation results over one reactor cycle demonstrate that changes in the creep rate and the hydraulic conditions may have a considerable impact on the bow amplitudes and the bow patterns. A good knowledge of the specific creep behavior and the hydraulic conditions is therefore crucial for making reliable predictions.

Design and Evaluation a Multi-coil Magneto-rheological Damper for Control Vibration of Washing Machine

  • Phu, Do Xuan;Park, Joon Hee;Woo, Jae Kwan;Choi, Seung Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.543-548
    • /
    • 2013
  • This paper presents a design of magnetorheological (MR) damper for control vibration of washing machine. This design is based on the requirements such as small dimensions with high damping force, and minimal consumed energy. The MR damper is designed using the shear mode of MR fluid, and Bingham plastic model is used for optimization process. In this design, a multi-coil design is adopted for damper to enhance damping force and reduce optimally structural parts. In optimization process, ADPL (Ansys Parametric Design Language) program is applied. Base on the optimal parameters, MR damper is manufactured and tested. In evaluation of MR damper, a modified sliding mode control is formulated and applied in both simulation and experiment. Results of experiment show that the MR damper satisfy the requirement of damping force for vibration control of washing machine.

  • PDF

Load/unload Dynamics of Slider on Ramp for Various Ramp Shapes (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Yong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1248-1254
    • /
    • 2005
  • L/UL(Load/unload) mechanism has been widely used in SFF(Small form factor) HDD because L/UL technology has many advantages such as an increase of areal density, reduction of power consumption and improvement of shock resistance. In this system, the most important design goal is no slider-disk contact and fast air-hearing breaking during L/UL process. To do so, we should consider many design parameters related to L/UL system. The ramp shape is the most dominant component among parameters which dramatically affect the L/UL performance. This paper makes an advanced ramp model using ANSYS/LS-DYNA. Through this FE model, this paper investigates the effect of initial ramp slope and location of air-bearing breaking. From the experiment for three different ramps, we also verify that experimental results agree with simulation results. We conclude that the ramp design should have small ramp slope at the moment which a suspension tap contacts with ramp and large ramp slope after air-bearing breaking in order to improve L/UL Performance.

A Piezoelectric Lens Actuator for Mobile Information Devices (모바일 기기용 렌즈 구동 압전형 액츄에이터 개발)

  • Lee, Hun-Tae;Lee, Seung-Yop;Park, Young-Phil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.744-749
    • /
    • 2005
  • In this paper, a lens actuator for mobile devices is proposed using stack type piezoelectric materials. In general, the deformation of PZT actuators is not enough for lens motion when the allowed voltage is applied. The small stroke problem can be solved by accumulating a lot of small displacements in high frequency. In this paper, a new inch-worm type model for focusing actuator is suggested based on the interaction of inertial and frictional forces. Theoretical analysis and simulation using ANSYS are performed to verify the feasibility of the inch-worm PZT actuator model. Various types of clamps are considered to determine the effect of frictional force on the motion, and appropriate clamp-actuator models are proposed. The proposed models are experimentally verified and the experimental results show high correspondence with theoretical and simulated values. The inch-worm type focusing actuator enable a large stroke with 7.79 mm/sec with 10kHz and 10V.

  • PDF

Multidisciplinary Design Optimization for Acoustic Characteristics of a Speaker Diaphragm (스피커 진동판의 음향특성 다분야통합최적설계)

  • Kim, Sung-Kuk;Lee, Tae-Hee;Lee, Surk-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.763-766
    • /
    • 2004
  • Recently, various acoustic artifacts that contains speaker have been produced such as cellular phone. Speaker consists of diaphragm generating sound and coil vibrating diaphragm. Generally, good speaker means that it has a wide frequency range, high output power rate to input power and flat sound pressure level in specified frequency range. Acoustic characteristic was estimated through the experiment and computer simulation, or sound power was controlled with acoustic sensitivity in a natural frequency range fer last decade. However, the flatness of sound pressure level has not been considered to enhance the sound quality of a speaker. Tn this study, a method for speaker design is proposed for a good acoustic characteristic, which is flatness of SPL(sound pressure level) and wideness between the first and second natural frequency. SYSNOISE is used fer acoustic analysis and ANSYS is used for harmonic response analysis and modal analysis. Optimization for acoustic characteristics of a speaker diaphragm is performed using ModelCenter. All analyses are done within a frequency domain. And we confirm that the experimental and computational simulations have similar trend.

  • PDF

Numerical simulation of concrete beams reinforced with composite GFRP-Steel bars under three points bending

  • Elamary, Ahmed S.;Abd-ELwahab, Rafik K.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.937-949
    • /
    • 2016
  • Fiber reinforced polymer (FRP) applications in the structural engineering field include concrete-FRP composite systems, where FRP components are either attached to or embedded into concrete structures to improve their structural performance. This paper presents the results of an analytical study conducted using finite element model (FEM) to simulate the behavior of three-points load beam reinforced with GFRP and/or steel bars. To calibrate the FEM, a small-scale experimental program was carried out using six reinforced concrete beams with $200{\times}200mm$ cross section and 1000 mm length cast and tested under three point bending load. The six beams were divided into three groups, each group contained two beams. The first group was a reference beams which was cast without any reinforcement, the second group concrete beams was reinforced using GFRP, and the third group concrete beams was reinforced with steel bars. Nonlinear finite element simulations were executed using ANSYS software package. The difference between the theoretical and experimental results of beams vertical deflection and beams crack shapes were within acceptable degree of accuracy. Parametric study using the calibrated model was carried out to evaluate two parameters (1) effect of number and position of longitudinal main bars on beam behavior; (2) performance of concrete beam with composite longitudinal reinforcement steel and GFRP bars.