• Title/Summary/Keyword: ANSYS fluent

Search Result 185, Processing Time 0.02 seconds

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Numerical Analysis of Conjugate Heat Transfer for Various Ice-Ball Shapes (다양한 아이스 볼 형상에 대한 복합열전달의 수치해석)

  • Park, Seo Won;Kim, Myoung Soo;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.605-612
    • /
    • 2016
  • In this study, numerical simulations were conducted for conjugate heat transfer around ice balls in an encapsulated ice thermal storage system. Four shapes of ice balls were modeled; the default one was a sphere, and the other three shapes were designed to enhance convective heat transfer through the ball surface. The flow around the ball was laminar, for which the Reynolds number was 300, and both forced and natural convections inside and outside the balls were considered. The simulations revealed that the magnitude of convective heat transfer for the different shapes decreased in the following order: bone, dimple, hole, and sphere. For the entire simulation, the maximum difference in the average temperatures of water inside the capsules was found to be $0.9^{\circ}C$. Therefore, it can be said that the effect of ice-ball shape on the performance of the ice thermal storage system is significant, considering that more than 0.3 million balls are used in this system.

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

A Study on the Installation of a Sewage Separator Pipe inside an Existing Combined Sewer System for CSO Control (기존 합류식 하수관거에 CSO 제어를 위한 하수분리관의 설치에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.85-93
    • /
    • 2021
  • Sewage separation which often involves installing a new pipe to separate wastewater flow from stormwater runoff flow can be costly and depends highly on its feasibility in a site. To be able to develop a potentially more economical alternative that can also lessen major road traffic disturbance during this process, a different approach where a smaller sewage separator pipe is installed inside an existing combined sewer pipe was investigated. A small-scale of a box sewer and the proposed sewage separator pipe was constructed in the laboratory to observe and compare the deposition of solids and other solid-associated major pollutants at different flow rates. In addition, three-dimensional flow simulations considering five different scenarios were conducted using Ansys Fluent to observe the effect of the proposed sewage separator pipe to the hydraulic flow if installed inside the combined sewer pipe. Results revealed that the deposition of TSS, TCOD, TN, and TP were reduced by at least 60% when the wastewater was conveyed by the sewage separator pipe instead of the combined sewer pipe. Moreover, the flow simulations conducted showed that there was little to no major disturbance in hydraulic flow and velocity distribution when the sewage separator was installed inside a straight pipe and even at pipe transitions such as intersections, turns, and drop in elevation. Considering the pipe dimensions and the results of the study, the proposed approach can be promising in terms of reduction in pollutant deposition without a major effect on the hydraulic flow. Further investigation and cost-analysis should be done in the future to support these preliminary findings and help alleviate the problems caused by combined sewer overflows by introducing an alternative approach.

Simulation and model validation of Biomass Fast Pyrolysis in a fluidized bed reactor using CFD (전산유체역학(CFD)을 이용한 유동층반응기 내부의 목질계 바이오매스 급속 열분해 모델 비교 및 검증)

  • Ju, Young Min;Euh, Seung Hee;Oh, Kwang cheol;Lee, Kang Yol;Lee, Beom Goo;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.200-210
    • /
    • 2015
  • The modeling for fast pyrolysis of biomass in fluidized bed reactor has been developed for accurate prediction of bio-oil and gas products and for yield improvement. The purpose of this study is to analyze and to compare the CFD(Computational Fluid Dynamics) simulation results with the experimental data from the CFD simulation results with the experimental data from the reference(Mellin et al., 2014) for gas products generated during fast pyrolysis of biomass in fluidized bed reactor. CFD(ANSYS FLUENT v.15.0) was used for the simulation. Complex pyrolysis reaction scheme of biomass subcomponents was applied for the simulation of pyrolysis reaction. This pyrolysis reaction scheme was included reaction of cellulose, hemicellulose, lignin in detail, gas products obtained from pyrolysis were mainly $CO_2$, CO, $CH_4$, $H_2$, $C_2H_4$. The deviation between the simulation results from this study and experimental data from the reference was calculated about 3.7%p, 4.6%p, 3.9%p for $CH_4$, $H_2$, $C_2H_4$ respectively, whereas 9.6%p and 6.7%p for $CO_2$ and CO which are relatively high. Through this study, it is possible to predict gas products accurately by using CFD simulation approach. Moreover, this modeling approach should be developed to predict fluidized bed reactor performance and other gas product yields.