• 제목/요약/키워드: ANSYS Workbench

검색결과 100건 처리시간 0.024초

등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가 (Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model)

  • 차진현;송우진;강범수;김정
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.731-738
    • /
    • 2012
  • 본 논문은 상용 유한요소코드인 ANSYS Workbench 12.1과 CFX 12.1을 이용하여 NREL Phase VI Rotor에 대한 공력특성을 입구풍속 7m/s 경우에 대해 연구하였다. 공탄성 효과를 고려하기 위해 약결합 양방향 유체구조 연성기법을 사용하여 타워구조를 제외한 로터파트에 대해서 해석이 수행되었다. 블레이드 끝단의 초기 피치각은 $3^{\circ}$로 설정하였고, 구조해석모델은 등가강성기법을 적용하였다. 신뢰성 있는 수렴판정 결과의 확보를 위해 블레이드 루터부의 굽힘모멘트를 실시간으로 모니터링 하였다. 해석의 신뢰성을 검증하기 위하여 해석결과를 NREL/NASA Ames 풍동 실험결과와 비교 분석하였다.

메타모델을 이용한 크레인 부품 조의 구조설계 (Structural Design of a Container Crane Part-Jaw, Using Metamodels)

  • 송병철;방일권;한동섭;한근조;이권희
    • 한국기계가공학회지
    • /
    • 제7권3호
    • /
    • pp.17-24
    • /
    • 2008
  • Rail clamps are mechanical components installed to fix the container crane to its lower members against wind blast or slip. According to rail clamps should be designed to survive harsh wind loading conditions. In this study, a jaw structure, which is a part of a wedge-typed rail clamp, is optimized with respect to its strength under a severe wind loading condition. According to the classification of structural optimization, the structural optimization of a jaw is included in the category of shape optimization. Conventional structural optimization methods have difficulties in defining complex shape design variables and preventing mesh distortions. To overcome the difficulties, the metamodel using Kriging interpolation method is introduced to replace the true response by an approximate one. This research presents the shape optimization of a jaw using iterative Kriging interpolation models and a simulated annealing algorithm. The new Kriging models are iteratively constructed by refining the former Kriging models. This process is continued until the convergence criteria are satisfied. The optimum results obtained by the suggested method are compared with those obtained by the DOE (design of experiments) and VT (variation technology) methods built in ANSYS WORKBENCH.

  • PDF

균열로의 그늘효과에 의한 슬랩변형에 관한 수치해석적 연구 (Numerical Study of Shadow Effect on Slab Deformation in Reheating Furnace)

  • 노정훈;황병복;맹주원;김재도
    • 소성∙가공
    • /
    • 제20권2호
    • /
    • pp.132-139
    • /
    • 2011
  • Three dimensional simulations were performed for the deformation of a slab in a roller hearth type slab reheating furnace. The main objective of this study was to examine the deformation pattern of the slab due to the shadow effect, i.e., the temperature difference between the upper and lower slab surfaces, in particular, the variations of displacement and effective stress in the vertical direction. A commercially available FE code, ANSYS Workbench $12.1^{TM}$, was used in a fully coupled thermo-elasticity analysis. Several cases with different slab surface temperatures were selected for the simulations. For the sake of simplicity, the temperature environment inside the furnace was assumed to be homogeneous for the upper and lower faces of the slab. Two cases of with different slab width were selected as model geometry. The deformation patterns were computed and explained in terms of periodicity and symmetry. The results indicated that the shadow effect leads to a significant displacement in the vertical direction and, thereby, is one of the main reasons for the separation of the slab and its supports. These simulations also predicted that the deformation is more severe along the transverse direction than along the longitudinal direction.

영구자석을 이용한 복수기 집수정 내부 자성이물질 제거장치 개발 (Development of an Apparatus for Removing Magnetic Sludge by Permanent Magnets Set up in the Condenser of the Power Plant)

  • 배준호;김문생;황범철;김철
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.938-948
    • /
    • 2009
  • In this paper, permanent magnets were used to remove magnetic sludge in the condenser of the power plant. To obtain the flow characteristics and magnetic information that are needed for determining a proper design of the magnetics sludge removal apparatus, numerical simulations were performed through the use of two commercial codes, ANSYS Workbench-Emag and CFX. Experiments were also performed on various kinds and sizes of magnets to obtain the magnetic information through a gauss meter. By analyzing the results of simulations and experiments, the minimum magnetic force that is able to remove the any size of the magnetic sludge in the condenser was calculated, and the design of the removal apparatus was confirmed. The test model which was confirmed by simulations and experiments was made. After testing, the test results were compared with those of numerical simulations and have good agreements.

Analysis of the Reduction Gear in Electric Agricultural Vehicle

  • Choi, Won-Sik;Kwon, Soon-Goo
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.159-165
    • /
    • 2018
  • In electric agricultural machine a reduction gear is needed to convert the high speed rotation motion generated by DC motor to lower speed rotation motion used by the vehicle. The reduction gear consists of several spur gears. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modelling and simulation of spur gears in DC motor reduction gear is important to predict the actual motion behaviour. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of reduction gear is simulated using ANSYS workbench based on finite element method (FEM). The modal analysis was done to understand reduction gear deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on reduction gear to simulate the gear teeth bending stress and contact stress behaviour.

고속 생산형 필름 진동판 성형기 및 금형 국산화 개발(II) - 다량 생산 진동판 성형기 - (Domestic Development of Vibrational Film Forming Machine and Die in the High Speed Production(II) - Multi-production forming machine -)

  • 김정현
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.52-58
    • /
    • 2014
  • This study consists of two parts. The first discusses the development of a single production forming machine which was reported in earlier papers. The second outlines the development of a multi-production forming machine, which consists primarily of a film feeding unit, an unwinding unit, and a heating block unit. The heating block unit of the multi-production forming machine has 30 members per die. An analysis of the stress deformation and temperature deviation of this machine is carried out using ANSYS Workbench and CFX-11 under the design conditions. According to this analysis, the maximum deflection in the Z-direction is $0.05104{\mu}m$ and the maximum temperature deviation is $0.7^{\circ}C$ when the temperature of the heating block unit is $175^{\circ}C$. It was also found that these values are structurally safe. The advantage of the developed multi-production forming machine is demonstrated to be in its offering of a proper voice test.

연성해석을 이용한 CNG 차량 압력 용기용 밸브의 안전성 평가 (Safety Evaluation of a Cylinder Valve for Compressed Natural Gas Vehicle Pressure Vessels using Fluid-structure Interaction Analysis)

  • 이효렬;안중환;김복만;김화영
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.103-108
    • /
    • 2014
  • Growing concerns about environmental pollution have led to an increase in the demand for compressed natural gas (CNG) vehicles in recent years. CNG vehicles are equipped with a cylinder valve installed in a high-pressure vessel to control the CNG flow. The cylinder valve must meet high quality safety standards because the pressure vessel stores high-pressure CNG. Therefore, safety evaluation of the cylinder valve is necessary to ensure the safety of CNG vehicles. In this study, fluid-structure interaction analysis for the structural integrity of the cylinder valve were conducted using a commercial finite element analysis code(ANSYS WORKBENCH V14). The CFD analysis was performed using a steady-state technique according to the inlet and outlet pressures in order to predict the pressure distribution. Structural analysis was performed by a static structure technique at the maximum working pressure to evaluate the structural integrity of the cylinder valve. From the results, the safety factor of the valve component is between 1.57 and 21.5.

LNG 연료추진 선박용 크랭크실 릴리프 밸브 스프링의 설계 및 평가 (Design and Evaluation of a Crankcase Relief Valve Spring for LNG-Fueled Ships)

  • 이효렬;안중환;안병훈;김화영
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.263-269
    • /
    • 2015
  • Growing concerns regarding air pollution have recently increased the demand for liquefied natural gas (LNG) fueled ships. LNG-fueled ships are equipped with an explosion relief valve in the crankcase to relieve excessive pressure and stop flames from emitting from the crankcase. In this study, a finite element analysis was conducted to evaluate the crankcase relief valve disk spring design using an ANSYS Workbench, v.15. The setting pressure, leak and explosion test performed by european standard EN14797 to evaluate function and mechanical integrity of crankcase relief valve. The tests results indicate that the pressure of the crankcase relief valve is 3.05 bar, with no air leakage at 2.97 bar. Finally, the mechanical integrity of the crankcase relief valve was confirmed through an explosion test in which the valve plate assembly, flame arrester, and other parts were safe from fracturing.

복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구 (A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret)

  • 최지환;김재실;조수용
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

트렁크 래치의 베이스 플레이트와 접촉스위치의 최적화 (Optimization of Base Plates and Contact Switches in Trunk Latches)

  • 김경남;노유정;김동훈
    • 한국자동차공학회논문집
    • /
    • 제22권3호
    • /
    • pp.97-104
    • /
    • 2014
  • Automobile trunk latches enable trunks to be opened and closed by a latch mechanism, which can be selectively positioned between a locked condition and an open condition. To maintain structural and electronic performance of the trunk latch, the latch needs to endure impact load that occurs in its open and close motion, and a dynamic mechanism needs to be electronically controled by a contact switch connected with a small DC motor. A base plate, which is the most important component relating to the structural safety, commonly uses a high stiffness material SAPH440-P with high manufacturing cost. In this paper, through structural analysis and optimization, production cost is significantly reduced by replacing SAPH440-P used in some region of the base plate with engineering plastic PBT GF 20%. The optimized contact switch reduces difference between distributed pressures of its two legs, which leads to improve the electronic performance of the trunk latch.