• Title/Summary/Keyword: ANSYS/CFX

Search Result 266, Processing Time 0.026 seconds

Wind turbine blade design using PROPID code and comparative analysis of aerodynamic properties based on CFD (PROPID 코드 활용 풍력발전기 블레이드 설계 및 CFD 기반 공력특성 비교분석)

  • Seo Yoon Choi;Jun Hee Jeong;Rae Hyung Yuck;Kwang Tae Ha;Jae Ho Jeong
    • Journal of Wind Energy
    • /
    • v.13 no.3
    • /
    • pp.5-12
    • /
    • 2022
  • A methodology of wind turbine blade design has been established with PROPID code, which is an aerodynamic blade design tool developed by UIUC. PROPID code can design and analyze a wind turbine blade in a steady state flow. The methodology of wind turbine blade design includes an initial blade concept design, airfoil selection, basic design, and detailed design steps. Inverse design and performance analysis of the 2.3 MW U113 wind turbine blade was performed to verify the wind turbine blade design methodology. The differences in calculated power between PROPID code and GH Bladed code are under 1.0% in all wind conditions. Both blade shape design and performance analysis results using PROPID code are accurate. The aerodynamic characteristics of a U113 blade were investigated by computational fluid dynamics. Separation flow was captured by a Reynolds-averaged Navier-Stokes steady flow simulation using ANSYS CFX code. The numerical aerodynamic analysis methodology was verified by comparing the analysis results through CFD with BEMT-based program GH Bladed code results. Therefore, the blade design methodology will be applied to develop a super-capacity 20 MW wind turbine blade in the future.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.

Numerical Heat Transfer Analysis of die Electrowinning Cell in the Pyroprocessing (파이로프로세스 전해제련장치의 열전달 해석)

  • Yoon, Dal-Seong;Paek, Seung-Woo;Kim, Si-Hyung;Kim, Kwang-Rag;Ahn, Do-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.213-218
    • /
    • 2009
  • Electrowinning process recovers uranium with actinide elements from spent fuels and is a key step in the Pyroprocessing because of proliferation resistance. An analysis of heat transfer of the Electrowinning cell was conducted to develop basic tool for designing engineering-scale Electrowinner. For the calculation of the heat transfer, ANSYS CFX commercial code was adapted. As a result of the calculation, the vertical Heating Zone length had great effect upon temperature of LiCl-KCl eutectic salt. To maintain constant temperature in the salt, the Heating Zone length should be three times longer than the height of the salt. However, the argon and salt temperatures were barely affected by the Cooling Zone length. The temperature under the Cell cover was mainly influenced by the number of the cooling plates. When the cooling plates were installed more than the number of 5, temperature under the cover was maintained below $250^{\circ}C$. These temperature properties had similar tendency toward the temperature of the Cell which was measured from experiments, Simulated heat transfer information from this study could be used to design engineering-scale Electrowinner.

  • PDF

Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD (CFD를 이용한 소형 2단 터보블로워의 공력해석)

  • Seo, Seungjae;Ryu, Minhyoung;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.326-335
    • /
    • 2014
  • Aerodynamic characteristics of the small two-stage turbo blower were investigated using commercial CFD tool(ANSYS CFX Ver. 14.5) in this paper. Turbo blower, which is a centrifugal type of turbomachinery, is used in various industries. It is used for application that required high static pressure rising at relatively small volumetric flow rate. In order to understand the mechanism of static pressure rising, the aerodynamic characteristics of the small two-stage turbo blower are analyzed at high rotating speed in this study. The k-${\omega}$ SST turbulence model, which is good at prediction of adverse pressure gradient flows, was applied. The CFD results of the turbo blower are validated by performance test. The static pressure rising of the turbo blower is nonlinearly increased over the first stage and the second stage. The secondary flow occurred at guide vanes, between the casing and the first impeller shroud, and the bottom of the impeller disk. As a result, It is required that whole fluid area is analyzed to predict aerodynamic characteristics of small two-stage turbo blower. and the result should be selected with considering for error from experiment and CFD.

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.

Low Speed Design of Rear Rotor in Contra-Rotating Axial Flow Pump

  • Cao, Linlin;Watanabe, Satoshi;Momosaki, Simpei;Imanishi, Toshiki;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • The application of contra-rotating rotors for higher specific speed pump has been proposed in our studies, which is in principle effective for reducing the rotational speed and/or the pump size under the same specification of conventional axial flow pump. In the previous experiments of our prototype, the cavitation inception at the tip region of the rear rotor rather than that of the front rotor and the strong potential interaction from the suction surface of the rear rotor blade to the pressure surface of the front one were observed, indicating the possibility to further improve the pump performance by optimizing rotational speed combination between the two rotors. The present research aims at the design of rear rotor with lower rotational speed. Considering the fact that the incoming flow velocity defects at the tip region of the rear rotor, an integrated inflow model of 'forced vortex' and 'free vortex' is employed. The variation of maximum camber location from hub to tip as well as other related considerations are also taken into account for further performance improvement. The ideas cited above are separately or comprehensively applied in the design of three types of rear rotor, which are subsequently simulated in ANSYS CFX to evaluate the related pump performance and therefore the whole low speed design idea. Finally, the experimental validation is carried out on one type to offer further proofs for the availability of the whole design method.

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet (디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구)

  • Yeom, J.K.;Kim, M.C.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

CFD Application to Evaluation of Wave and Current Loads on Fixed Cylindrical Substructure for Ocean Wind Turbine (해상풍력발전용 고정식 원형 하부구조물에 작용하는 파랑 및 조류 하중 해석을 위한 CFD 기법의 적용)

  • Park, Yeon-Seok;Chen, Zheng-Shou;Kim, Wu-Joan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.7-14
    • /
    • 2011
  • Numerical simulations were performed for the evaluation of wave and current loads on a fixed cylindrical substructure model for an ocean wind turbine using the ANSYS-CFX package. The numerical wave tank was actualized by specifying the velocity at the inlet and applying momentum loss as a wave damper at the end of the wave tank. The Volume-Of-Fluid (VOF) scheme was adopted to capture the air-water interface. An accuracy validation of the numerical wave tank with a truncated vertical circular cylinder was accomplished by comparing the CFD results with Morison's formula, experimental results, and potential flow solutions using the higher-order boundary element method (HOBEM). A parametric study was carried out by alternately varying the length and amplitude of the wave. As a meaningful engineering application, in the present study, three kinds of conditions were considered, i.e., cases with current, waves, and a combination of current and progressive waves, passing through a cylindrical substructure model. It was found that the CFD results showed reasonable agreement with the results of the HOBEM and Morison's formula when only progressive waves were considered. However, when a current was included, CFD gave a smaller load than Morison's formula.

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.