• Title/Summary/Keyword: ANPR

Search Result 4, Processing Time 0.018 seconds

MATHEMATICAL IMAGE PROCESSING FOR AUTOMATIC NUMBER PLATE RECOGNITION SYSTEM

  • Kim, Sun-Hee;Oh, Seung-Mi;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.57-66
    • /
    • 2010
  • In this paper, we develop the Automatic Number Plate Recognition (ANPR) System. ANPR is generally composed of the following four steps: i) The acquisition of the image; ii) The extraction of the region of the number plate; iii) The partition of the number and iv) The recognition. The second and third steps incorporate image processing technique. We propose to resolve this by using Partial Differential Equation(PDE) based segmentation method. This method is computationally efficient and robust. Results indicate that our methods are capable to recognize the plate number on difficult situations.

A Study on Road Traffic Volume Survey Using Vehicle Specification DB (자동차 제원 DB를 활용한 도로교통량 조사방안 연구)

  • Ji min Kim;Dong seob Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.93-104
    • /
    • 2023
  • Currently, the permanent road traffic volume surveys under Road Act are conducted using a intrusive Automatic Vehicle Classification (AVC) equipments to classify 12 categories of vehicles. However, intrusive AVC equipment inevitably have friction with vehicles, and physical damage to sensors due to cracks in roads, plastic deformation, and road construction decreases the operation rate. As a result, accuracy and reliability in actual operation are deteriorated, and maintenance costs are also increasing. With the recent development of ITS technology, research to replace the intrusive AVC equipment is being conducted. However multiple equipments or self-built DB operations were required to classify 12 categories of vehicles. Therefore, this study attempted to prepare a method for classifying 12 categories of vehicles using vehicle specification information of the Vehicle Management Information System(VMIS), which is collected and managed in accordance with Motor Vehicle Management Act. In the future, it is expected to be used to upgrade and diversify road traffic statistics using vehicle specifications such as the introduction of a road traffic survey system using Automatic Number Plate Recognition(ANPR) and classification of eco-friendly vehicles.

Design and Implementation of Vehicle Route Tracking System using Hadoop-Based Bigdata Image Processing (하둡 기반 빅데이터 영상 처리를 통한 차량 이동경로 추적 시스템의 설계 및 구현)

  • Yang, Seongeun;Choi, Changyeol;Choi, Hwangkyu
    • Journal of Digital Contents Society
    • /
    • v.14 no.4
    • /
    • pp.447-454
    • /
    • 2013
  • As the surveillance CCTVs are increasing every year, big data image processing for the CCTV image data has become a hot issue. In this paper, we propose a Hadoop-based big data image processing technique to recognize a vehicle number from a large amount of automatic number plate images taken from CCTVs. We also implement the vehicle route tracking system that displays the moving path of the searched vehicle on Google Maps with the related information together. In order to evaluate the performance we compare and analysis the vehicle number recognition time for a lot of CCTV image data in Hadoop and the single PC environment.

A Licence Plate Recognition System using Hadoop (하둡을 이용한 번호판 인식 시스템)

  • Park, Jin-Woo;Park, Ho-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.142-145
    • /
    • 2017
  • Currently, a trend in image processing is high-quality and high-resolution. The size and amount of image data are increasing exponentially because of the development of information and communication technology. Thus, license plate recognition with a single processor cannot handle the increasing data. This paper proposes a number plate recognition system using a distributed processing framework, Hadoop. Using SequenceFile format in Hadoop, each mapper performs a license plate recognition with a number of image data in a data block Experimental results show that license plate recognition performance with 16 data nodes accomplishes speedup of maximum 14.7 times comparing with one data node. In large dataset, the recognition performance is robust even if the number of data nodes increases gradually.