• Title/Summary/Keyword: ANNUAL MEAN TEMPERATURE

Search Result 348, Processing Time 0.023 seconds

Quantification of Environmental Characteristics on Citrus Production Area of Jeju Island in Korea (제주도 감귤 재배지역에 대한 환경특성의 정량화)

  • Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Oh, SoonJa;Park, Kyo Sun;Hyun, Hae-Nam
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • To analyze quantitatively environmental characteristics of cultivation area of citrus, Satsuma mandarin (Citrus unshiu Marc.), we made digital maps of environmental elements such as topography and climate. Elevation, degree of slope, and slope aspect were selected as elements of topological environment, and the annual mean air temperature, annual total precipitation, mean air temperature on January, extreme value of daily minimum air temperature, and the number of days below $-5^{\circ}C$ were selected as elements of climatic environments. The grid values of 8 environmental elements were extracted by shape of citrus farm area and analyzed distribution patterns. We can determine 3 agroclimatic criteria for growing Satsuma mandarin as over $14.5^{\circ}C$ of annual mean air temperature, over $-10.0^{\circ}C$ of extreme value of daily minimum air temperature, and less 5 days of below $-5^{\circ}C$ of daily minimum air temperature.

Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea) (東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因)

  • Kang, Yong Q
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.163-171
    • /
    • 1984
  • The atmospheric and oceanic influences on the air-sea thermal interaction in the East Sea (Japan Sea) are studied by means of an analytic model which is based on the heat budget of the ocean. By means of the model, the model, the annual variations of heat fluxes and air temperatures in the East Sea are analytically simulated. The model shows that the back radiation, the latent heat and the sensible heat increase with the warn water advection. The latent heat increases with the sea surface temperature (SST) but the back radiation and the sensible heat dcrease as the SST increases. In the East Sea, an increase of mean SST by 1.0$^{\circ}C$ yields an increase of mean air temperature by 1.2$^{\circ}C$. The heat storage in the ocean plays an important role in the annual variations of heat flux across the sea surface.

  • PDF

Carbon storage, Litterfall and Soil $CO_2$ Efflux of a Larch(Larix leptolepis) Stand

  • Kim, Choon-Sig
    • Animal cells and systems
    • /
    • v.10 no.4
    • /
    • pp.191-196
    • /
    • 2006
  • This study was carried out to evaluate soil carbon cycling of a 36-year-old larch (Larix leptolepis) stand in Korea. The aboveground and soil organic carbon storage, litterfall, and soil respiration rates were measured over twoyear periods. The estimated aboveground biomass carbon storage and increment were 4220 gC $m^{-2}$ and 150 gC $m^{-2}\;yr^{-1}$, respectively. Mean organic carbon inputs by needle and total litterfall were 118 gC $m^{-2}\;yr^{-1}$ and 168 gC $m^{-2}\;yr^{-1}$, respectively. The aboveground carbon increment of the stand was similar to the annual input of carbon from total litterfall. The soil respiration rates correlated exponentially with the soil temperature at a depth of 20 cm ($R^2$ = 0.86). In addition, the exponential regression equation indicated a relatively strong positive relationship between the soil respiration rates and soil temperature, while there was no significant relationship between the soil respiration rates and the soil moisture content. The annual mean and total soil respiration rates were 0.40 g $CO_2\;m^{-2} h^{-1}$ and 3010 g $CO_2\;m^{-2}\;yr^{-1}$ over the two-year study period, respectively.

Study on the Annual Building Load Predicting Method using a Polynomial Function (다항함수를 이용한 건물의 연간부하 예측 방법에 관한 연구)

  • Yun, Hi-won;Choi, Seung-Hyuck;Ryu, Hyung-Kyou
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • In order to use and manage the building energy efficiently, it is necessary to minimize building energy consumptions, and establish operation plans of various equipment. The maximum heating and cooling load calculation is an essential way in various equipment selections, and the annual building load calculation is used in forecasting & evaluating the LCC required for operation plan. In this study, noting that the annual building load changes depending on outside temperature around year, we propose a predicting method of annual building load. By using the $4^{th}$ polynomial function that have two double radix and a feature the $f(x)=a^4$ in x = 0 condition, we can calculate annual building load very easily only with the two result (maximum heating and cooling load) and a minimum parameters.

Temporal and Spatial Analysis of SST in the Northeast Asian Seas Using NOAA/AVHRR data (NOAA/AVHRR 자료에 의한 동북아시아해역 표층해수온의 시공간분석)

  • Min, Seung-Hwan;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.12
    • /
    • pp.2818-2826
    • /
    • 2010
  • To study the spatial and temporal variations of sea surface temperature(SST) in the Northeast Asia sea during the period of 1985 to 2009. At first, the buoy data from Korea Meteorological Administration(KMA) and the satellite data have been matched up eight points. The root mean square error and the bias were increased towards the coastal shallow region. The study area which is divided 7 regions from Japan Meteorological Agency(JMA). We analyzed NOAA/AVHRR data by harmonic analysis which is comparison and analysis the center of the each regions. The mean SST varied between $8^{\circ}C$ to $26.0^{\circ}C$. The annual amplitude varied between $7^{\circ}C$ to $24^{\circ}C$. And the annual phase varied between end of July to end of August. Cross-correlation coefficients of mean SST, annual amplitude, and annual phase varied 0.57 to 0.85, -0.04 to 0.81 and 0.35 to 0.80 at all study area, respectively.

Reproductive Biology of the Temperate Soft Coral Dendronephthya suensoni (Alcyonacea: Nephtheidae)

  • Choi, Eun-Ji;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.215-225
    • /
    • 2007
  • The azooxanthellate soft coral Dendronephthya suensoni (Holem, 1895) is distributed mainly around Jejudo Island, Korea. This species was determined as gonochoric with a sex ratio of 2:1 (female:male). Both female and male colonies have one gametogenic cycle a year. The annual reproductive cycle of D. suensoni is dependent on the seawater temperature. In particular, reproduction of the male colony showed a higher positive correlation between seawater temperature and the mean diameter of the spermaries. Gametogenesis in females and males took 6 months and 12 months, respectively. The mean diameter of a mature oocyte was $249.29\;{\pm}\;36.24\;{\mu}m$, with a maximum size of $354.45\;{\mu}m$. Spawning could have occurred in the fall after the seawater temperature began to decrease.

Climate Change Impacts in Natural Resources and Livestock in Mongolia Climate

  • Batima, P.;Natsagdorj, L.;Bayarbaatar, L..;Bolortsetseg, B.;Natsagsuren, N.;Erdenetsetseg, B.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.103-104
    • /
    • 2004
  • This paper discuss some results of observed changes of meteorological elements as temperature, precipitation and some extreme indexes in Mongolia. Mongolia is one of the largest landlocked countries in the world. The climate is characterized by a long lasting cold winter, dry and hot summer, low precipitation, high temperature fluctuation and relatively high number of sunny days per year. During last 60 years the annual mean air temperature has risen $1.66^{\circ}C$. Intensive warming of > $2^{\circ}C$ was observed at higher altitudes of high mountains when warming of < $1^{\circ}C$ was observed the Domod steppe and the Gobi Desert. Heat Wave Duration have statistically significant risen trend with increaded number of days by 8-18 at significance level of 95-99.9% depending on geography and Cold Wave Duration have shortened by 13.3 days significance level of 95-99%. In general, by the amount of precipitation, Mongolia falls in semi-arid and arid region. It is 300-350 mm in the high mountain regions while it is only 50-150 mm in Gobi Desert regions. The changes of annual precipitation have very localized character i.e.decreasing at one site and increasing at a sit nearby. Annual precipitation decreased by 30-90 mm in the northern-central region and increased by 2-60 mm in the western and eastern region. The magnitude of alteration changes in precipitation regardless increasing or decreasing is 5-25%. A trends, significant at the level of 90%, found where changes are more than 40 mm or more than 15% of annual mean value. Moreover, the soil moisture resources was decreased in the last 40 years. Specially, moisture contents of the top soil have decreased 2 times(N. Natsagsuren, 2002). Months of June and July in Mongolia is the year that moisture is not inhibiting vegetation growth. Unfortunately, its also found that moisture in this time tends to decrease. Increased temperature, decreased precipitation and soil moisture are most likely resulted in occurences of more intense drought spells that have taken place during the recent years. Intimately, these changes have considerable impact on livestock in Mongolia.

  • PDF

Changes of the Forest Types by Climate Changes using Satellite imagery and Forest Statistical Data: A case in the Chungnam Coastal Ares, Korea (위성영상과 임상통계를 이용한 충남해안지역의 기후변화에 따른 임상 변화)

  • Kim, Chansoo;Park, Ji-Hoon;Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.523-538
    • /
    • 2011
  • This study analyzes the changes in the surface area of each forest cover, based on temperature data analysis and satellite imagery as the basic methods for the impact assessment of climate change on regional units. Furthermore, future changes in the forest cover are predicted using the double exponential smoothing method. The results of the study have shown an overall increase in annual mean temperature in the studied region since 1990, and an especially increased rate in winter and autumn compared to other seasons. The multi-temporal analysis of the changes in the forest cover using satellite images showed a large decrease of coniferous forests, and a continual increase in deciduous forests and mixed forests. Such changes are attributed to the increase in annual mean temperature of the studied regions. The analysis of changes in the surface area of each forest cover using the statistical data displayed similar tendencies as that of the forest cover categorizing results from the satellite images. Accordingly, rapid changes in forest cover following the increase of temperature in the studied regions could be expected. The results of the study of the forest cover surface using the double exponential smoothing method predict a continual decrease in coniferous forests until 2050. On the contrary, deciduous forests and mixed forests are predicted to show continually increasing tendencies. Deciduous forests have been predicted to increase the most in the future. With these results, the data on forest cover can be usefully applied as the main index for climate change. Further qualitative results are expected to be deduced from these data in the future, compared to the analyses of the relationship between tree species of forest and climate factors.

Influence of Greenhouse Gases on Radiative Forcing at Urban Center and Background Sites on Jeju Island Using the Atmospheric Radiative Transfer Model (대기복사전달모델을 이용한 제주지역 도심 및 배경지점에서의 온실가스에 따른 복사강제력 영향 연구)

  • Lee, Soo-Jeong;Song, Sang-Keun;Han, Seung-Beom
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.423-433
    • /
    • 2017
  • The spatial and temporal variations in radiative forcing (RF) and mean temperature changes of greenhouse gases (GHGs), such as $CO_2$, $CH_4$, and $N_2O$, were analyzed at urban center (Yeon-dong) and background sites (Gosan) on Jeju Island during 2010~2015, based on a modeling approach (i.e., radiative transfer model). Overall, the RFs and mean temperature changes of $CO_2$ at Yeon-dong during most years (except for 2014) were estimated to be higher than those at Gosan. This might be possibly because of its higher concentrations at Yeon-dong due to relatively large energy consumption and small photosynthesis and also the difference in radiation flux due to the different input condition (e.g., local time and geographic coordinates of solar zenith angle) in the model. The annual mean RFs and temperature changes of $CO_2$ were highest in 2015 ($2.41Wm^{-2}$ and 1.76 K) at Yeon-dong and in 2013 ($2.22Wm^{-2}$ and 1.62 K) at Gosan (except for 2010 and 2011). The maximum monthly/seasonal mean RFs and temperature changes of $CO_2$ occurred in spring (Mar. and/or Apr.) or winter (Jan. and/or Feb.) at the two sites during the study period, whereas the minimum RFs and temperature changes in summer (Jun.-Aug.). In the case of $CH_4$ and $N_2O$, their impacts on the RF and mean temperature changes were very small (an order of magnitude lower) compared to $CO_2$. The spatio-temporal differences in these RF values of GHGs might primarily depend on the atmospheric profile (e.g., ozone profile), surface albedo, local time (or solar zenith angle), as well as their mass concentrations.

Seasonal Variation of Surface heat budget and Wind Stress Over the Seas Around the Korean Peninsula (한반도주위 해양에서 의 해면 열수지와 응력의 계절변화)

  • 강인식;김맹기
    • 한국해양학회지
    • /
    • v.29 no.4
    • /
    • pp.325-337
    • /
    • 1994
  • The distributions of heat and momentum fluxes on the surface over the oceans around the Korean Peninsula are obtained based on the surface-layer flux model of Kim and Kang (1994), and their seasonal variations are examined in the present study. the input data of the model is the oceanatmosphere data with a grid interval of 2$^{\circ}$ in longitude and latitude. The atmosphere data, which are the pressure, temperature, and specific humidity on the 1000 mb level for 3 year period of 1985∼1987, are obtained from the European center for Medium Range Forecast. The sea surface temperature (SST) is obtained from National Meteorological Center (NMC). The solar insolation and longwave radiation on the ocean surface are obtained, respectively, from the NASA satellite data and based on an emprical formula. It is shown from the net heat flux that the oceans near Korea lose heat to the atmosphere in January and October with the rates of 200∼ 400 Wm/SUP -2/ and 100 Wm/SUP -2/, respectively. But the oceans are heated by the atmosphere in April and July with about the same rate of 100 Wm/SUP -2/. The annualmean net heat flux is negative over the entire domain except the northern part of the Yellow Sea. The largest annual-mean cooling rate of about 120 Wm/SUP -2/ is appeared off the southwest of Japan. In the East Sea, the annual-mean cooling rate is 60∼90 Wm/SUP -2/ in the southern and northern parts and about 30 Wm/SUP -2/ in the middle part. The magnitude of wind stress in january is 3∼ 5 times bigger than those of the other months. As a result, the spatial pattern of annual-mean wind stress is similar to that of January. It is also shown that the annual-mean wind stress curl is negative. in the East China Sea and the South Sea,but it is positive in the northern part of the Yellow Sea.In the East sea,the stress curl is positive in the southeast and northern parts and negative in the northwestern part.

  • PDF