• 제목/요약/키워드: ANNUAL MEAN TEMPERATURE

Search Result 348, Processing Time 0.03 seconds

Possibility of Estimating Daily Mean Temperature for Improving the Accuracy of Temperature in Forage Yield Prediction Model (풀사료 수량예측모델의 온도 정밀도 향상을 위한 일평균온도 추정 가능성 검토)

  • Kang, Shin Gon;Jo, Hyun Wook;Kim, Ji Yung;Kim, Kyeong Dae;Lee, Bae Hun;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.1
    • /
    • pp.56-61
    • /
    • 2021
  • This study was conducted to determine the possibility of estimating the daily mean temperature for a specific location based on the climatic data collected from the nearby Automated Synoptic Observing System (ASOS) and Automated Weather System(AWS) to improve the accuracy of the climate data in forage yield prediction model. To perform this study, the annual mean temperature and monthly mean temperature were checked for normality, correlation with location information (Longitude, Latitude, and Altitude) and multiple regression analysis, respectively. The altitude was found to have a continuous effect on the annual mean temperature and the monthly mean temperature, while the latitude was found to have an effect on the monthly mean temperature excluding June. Longitude affected monthly mean temperature in June, July, August, September, October, and November. Based on the above results and years of experience with climate-related research, the daily mean temperature estimation was determined to be possible using longitude, latitude, and altitude. In this study, it is possible to estimate the daily mean temperature using climate data from all over the country, but in order to improve the accuracy of daily mean temperature, climatic data needs to applied to each city and province.

Climatic and Environmental Effects on Distribution of Narrow Range Plants (국지적으로 분포하는 식물에 대한 기후 및 환경변수 영향)

  • Kwon, Hyuksoo;Ryu, Jieun;Seo, Changwan;Kim, Jiyeon;Tho, Jaehwa;Suh, Minhwan;Park, Chonghwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.17-27
    • /
    • 2012
  • Climate is generally accepted as one of the major determinants of plants distribution. Plants are sensitive to bioclimates, and local variations of climate determine habitats of plants. The purpose of this paper is to identify the factors affecting the distribution of narrow-range plants in South Korea using National Survey of Natural Environment data. We developed species distribution models for 6 plant species using climate, topographic and soil factors. All 6 plants were most sensitive to climatic factors but less other factors at national scale. Meliosma myriantha, Stewartia koreana and Eurya japonica, distributed at southern and coast region in Korea, were most sensitive to precipitation and temperature. Meliosma myriantha was mostly effected by annual precipitation and precipitation of driest quarter, Stewartia koreana was effected by annual precipitation and elevation, and Eurya japonica was affected by temperature seasonality and precipitation of driest quarter. On the other hand, Spiraea salicifolia, Rhododendron micranthum and Acer tegmentosum, distributed at central and northern inland in Korea, were most sensitive to temperature and elevation. Spiraea salicifolia was affected by mean temperature of coldest quarter and annual mean temperature, Rhododendron micranthum and Acer tegmentosum were affected by mean temperature of warmest quarter and elevation. We can apply this result to future plant habitat distribution under climate change.

The Effect of some Meteorological Factors on the seed characteristics in Korean White pine (Pinus koraiensis S. et Z.) - The weight of cone and seed per cone - (잣나무 종자형질에 미치는 몇 개 기상인자의 영향 -구과 무게 및 구과당 종자 무게 -)

  • Joo Young-Tuk;Chon Sang-Kuen;Chung Dong-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.1 no.1
    • /
    • pp.20-28
    • /
    • 1999
  • This study was conducted to reveal the effect of some meterological factors on the weight of cone and seed per cone in Korean white pine (Pinus koraiensis SIEB. et ZUCC.). The weight of cone and seed per cone for 7 years from 1992 to 1998 on 45(1992) year-old trees and some meterological factors for 9 years from 1990 to 1998 were surveyed in Hongcheon-Gun region, Gangweon-Do. Simple correlations and multiple regression between weight of cone and seed per cone and some meterological factors were analyzed. The results obtained from the above experiments were as follows: 1. Positive correlations were found between weight of cone and monthly mean temperature of February in flower bud differentiation year. number of annual hoarfrost days of the cone production year monthly mean temperature of may in the cone production year, as July respectively. There were negative correlations between weight of cone and monthly mean temperature of august in the flowering year, wind speed of April in the flower bud differentiation year, number of clear days of december in the flowering year, number of annual cloudy days of the flowering year, number of precipitation days of june in the flowering year, number of annual precipitation days of the flowering year, number of annual cloudy days of March in the cone production year. number of annual cloudy days from march to October in the flowering year as well as number of precipitation from march to october in the flowering year. 2. Positive correlation between weight of seed per cone and number of hours with sunshine duration of June in the flowering year, the percentage of sunshine duration of June in the flowering year, number of clear days of June in the flowering year. monthly mean temperature of may in the cone production year. as well as monthly mean temperature of July in the cone production year were found. Negative correlations were recognized between weight of seed per cone and monthly mean temperature of January in the flowering year, monthly mean temperature of august in the flowering year, wind speed of april in the flower bud differentiation year, number of annual cloudy days of the flowering year, number of precipitation days of June in the flowering year, number of annual cloudy days from March to October in the flowering year as well as number of precipitation from march to October in the flowering year.

  • PDF

Change of temperature patterns in Seoul (서울의 온도 패턴 변화)

  • Jang, Hak-Jin;Joo, Yong-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.89-96
    • /
    • 2009
  • We examined the characteristics of temperature variation in Seoul between 1961 to 2008 using the spectral heteroscedastic model. The mean function in the propsed model explains the season effect using periodic functions and the overall increase using the quadratic regression spline. The variance function also had periodic functions to explain the seasonality of variance. We found that there has been annual mean temperature increase by about $1.5^{\circ}C$ for the last 48 years. The increase of annual mean temperature was mainly caused by the increase in winter, which made the amplitude decreased.

  • PDF

Inter-Annual and Intra-Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea

  • Ha, Kyung-Ja;Oh, Hyun-mi;Kim, Ki-Young
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.111-119
    • /
    • 2001
  • This study analyzes time variability of the normalized difference vegetation index (NDVI), the leaf area index (LAI) and surface temperature (Ts) estimated from AVHRR data collected from across the Korean peninsula from 1981 to 1994. In the present study, LAI defined as vegetation density, as a function of NDVI applied for the vegetation types and Ts defined by the split-window formulation of Becker and Li (1990) with emissivity of a function of NDVI, are used. Results of the inter-annual, intra-annual and intra-seasonal variabilities in Korea show: (1) Inter-annual variability of NDVI is generally larger in the southem and eastern parts of the peninsula than in the western part. This large variability results from the significant mean variation. (2) Inter-annual variability of Ts is larger in the areas of smaller NDVI. This result shows that the NDVI play a small role in emissivity. (3) Inter-annual variability of LAI is larger in the regions of higher elevation and urban areas. Changes in LAI are unlikely to be associated with NDVI changes. (4) Changes in NDVI and Ts are likely dominant in July and are relatively small in spring and fall. (5) Urban effect would be obvious on the time-varying properties of NDVI and Ts in Seoul and the northern part of Taejon, where NDVI decreases and Ts increases with a significant magnitude.

Latitudinal Differences in the Accumulation of Soil Organic Matter in Selected Kroean Forest Types (한반도의 몇 삼림형에 따른 임토육기물 축종량의 위도적차이에 대해서)

  • 임양재
    • Journal of Plant Biology
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 1971
  • Accumulation of soil organic matter and its vertical distribution at different latitudes in peninsular Korea were studied in the soil of four different forest types viz. Pinus densiflora forest, Castanea forest, Quercus acutissima forest and Carpinus laxiflora forest. Among them, accumulation of soil organic matter in Cheju sites, with a mean annual temperature of 15$^{\circ}C$, was maximum with increasing latitude, soil organic matter concentration decreased. Considering the relationship between concentration of soil organic matter and some climatic conditiions, it seems that concentrations of soil organic matter is a function of annual temperature, especially warmth index or cold index.

  • PDF

Observation-based Analysis of Climate Change using Meteorological Data of Gangneung (기상 관측 자료를 이용한 강릉의 기후변화 추세 분석)

  • Lee, Jaeho;Baek, Hee-Jeong;Hyun, Yu-Kyung;Cho, Chunho
    • Journal of Climate Change Research
    • /
    • v.2 no.2
    • /
    • pp.133-141
    • /
    • 2011
  • This study is to identify the trend of climate change in Gangwon-do by examining accumulated climate data such as temperature and precipitation in Gangneung city over the past about 100 years. The annual mean temperature and precipitation in Gangneung have increased by $1.4^{\circ}C$ and 14.7%, respectively, over the last 98 years (1912~2009). The trends of Gangneung showed that precipitation has intensified as the number of precipitation days decreased while its amount increased during the period. Based on the temperature data, spring and summer began earlier whereas the onsets of fall and winter were delayed. Summer has become longer and winter shorter by about a month. Averaging observation data from seven weather stations in Gangwon-do, the annual mean temperature and precipitation have increased by $0.8^{\circ}C$ and 21.0% respectively over the last 37 years (1973~2009). By region, Wonju city recorded the biggest increase of $1.6^{\circ}C$ in the annual mean temperature while Sokcho city the smallest increase of $0.4^{\circ}C$. In the annual mean precipitation, Daegwallweong recorded the biggest change of 22.2% and Wonju city the smallest of 12.0%.

Estimation of Air Temperature Changes due to Future Urban Growth in the Seoul Metropolitan Area (수도권지역 미래 도시성장에 따른 기온변화 추정)

  • Kim, Yoo-Keun;Kim, Hyun-Su;Jeong, Ju-Hee;Song, Sang-Keun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.237-245
    • /
    • 2010
  • The relationship between air temperatures and the fraction of urban areas (FUA) and their linear regression equation were estimated using land-use data provided by the water management information system (WAMIS) and air temperatures by the Korea Meteorology Administration (KMA) in the Seoul metropolitan area (SMA) during 1975 through 2000. The future FUA in the SMA (from 2000 to 2030) was also predicted by the urban growth model (i.e., SLEUTH) in conjunction with several dataset (e.g., urban, roads, etc.) in the WAMIS. The estimated future FUA was then used as input data for the linear regression equation to estimate an annual mean minimum air temperature in the future (e.g., 2025 and 2030). The FUA in the SMA in 2000 simulated by the SLEUTH showed good agreement with the observations (a high accuracy (73%) between them). The urban growth in the SMA was predicted to increase by 16% of the total areas in 2025 and by 24% in 2030. From the linear regression equation, the annual mean minimum air temperature in the SMA increased about $0.02^{\circ}C$/yr and it was expected to increase up to $8.3^{\circ}C$ in 2025 and $8.7^{\circ}C$ in 2030.

A Study on the Change of the Urban Heat Island Structure in Busan Metropolitan Area, Korea (부산지역의 도시열섬 구조 변화에 관한 연구)

  • Kim, Hyunsu;Seok, Hyun-Bae;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1807-1820
    • /
    • 2014
  • The spatial and temporal changes of the annual mean urban heat island(UHI) intensity were investigated using near surface temperature data measured at 16 automatic weather systems(AWS) in Busan metropolitan area(BMA) during the 11-yr period, from 2000 to 2010. For nighttime, the annual mean UHI intensity at Dongnae(U1) in 2000 was weaker than it in 2010. However the change of the annual mean UHI intensity at Daeyeon(U2) during 11 years was different from it at U1. The annual frequency of the UHI intensity over $5^{\circ}C$ considerably increased at U2 and decreased at U1 during 11 years. The center of the UHI also spatially shifted southward with Daeyeon and Haeundae in BMA. It would be caused by the increase of urban area, population-density and transportation near U2 and by the decrease of them near U1. We found that the spatial and temporal differences of the UHI intensity have coincided with changes of land-use, population density and transportation in BMA.

An Analysis on the Variation Trend of Urban Heat Island in Busan Area (2006-2010) (부산지역 도시 열섬의 변화경향 분석 (2006-2010))

  • Do, Woo-Gon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.953-963
    • /
    • 2012
  • The annual variations of the urban heat island in Busan is investigated using surface temperature data measured at 3 automatic weather stations(AWSs) for the 5 years period, 2006 to 2010. Similar to previous studies, the intensity of the urban heat island is calculated using the temperature difference between downtown(Busanjin, Dongnae) and suburb(Gijang). The maximum hourly mean urban heat island are $1.4^{\circ}C$ at Busanjin site, 2300LST and $1.6^{\circ}C$ at Dongnae site, 2100LST. It occurs more often at Dongnae than Busanjin. Also the maximum hourly mean urban heat island appears in November at both sites. The urban heat island in Busan is stronger in the nighttime than in the daytime and decreases with increasing wind speed, but it is least developed in summer. Also it partly causes the increasement of nighttime PM10 concentration.