• Title/Summary/Keyword: ANN(Artificial Neural Networks)

Search Result 372, Processing Time 0.026 seconds

Structural damage detection of steel bridge girder using artificial neural networks and finite element models

  • Hakim, S.J.S.;Razak, H. Abdul
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.367-377
    • /
    • 2013
  • Damage in structures often leads to failure. Thus it is very important to monitor structures for the occurrence of damage. When damage happens in a structure the consequence is a change in its modal parameters such as natural frequencies and mode shapes. Artificial Neural Networks (ANNs) are inspired by human biological neurons and have been applied for damage identification with varied success. Natural frequencies of a structure have a strong effect on damage and are applied as effective input parameters used to train the ANN in this study. The applicability of ANNs as a powerful tool for predicting the severity of damage in a model steel girder bridge is examined in this study. The data required for the ANNs which are in the form of natural frequencies were obtained from numerical modal analysis. By incorporating the training data, ANNs are capable of producing outputs in terms of damage severity using the first five natural frequencies. It has been demonstrated that an ANN trained only with natural frequency data can determine the severity of damage with a 6.8% error. The results shows that ANNs trained with numerically obtained samples have a strong potential for structural damage identification.

Multi-Level Neural Networks for Progressive Structural Design (점진적 구조설계를 위한 다단계 인공신경망)

  • 김남희;장승필;이승철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.233-240
    • /
    • 2001
  • Artificial neural networks(ANN) have been exploited where the relationship among information is very complicated and nonlinear. It is appropriate to computerize the information and knowledge used in the preliminary design stage where it lacks of formality of representation of designers' experience and intuition. However, most designers start the preliminary design stage with very little information. Therefore, the ANN model for this stage must be designed to have input much less than output. This case usually causes big troubles such as in learning time, convergence and reliability of solutions. To address this problem, this paper proposes multi-level neural networks for progressive structural design considering that all the design information can not be obtained at a time but are growing gradually. The use of multi-level networks developed in this paper has been proved its validity by applying it to the preliminary design of cable-stayed bridges.

  • PDF

Design Models for Electric Coupling Probe in Combline Resonators Using Neural Network (신경망을 이용한 Combline 공진기 내의 전계결합 프로브 설계 모델)

  • 김병욱;김영수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.366-369
    • /
    • 2002
  • Two artificial neural networks (ANN) are used to model the electric coupling probe in the combline resonators. One is used to analyze and synthesize the electric probe, and the other is used to correct errors between the results of the analysis and the synthesis ANNs and the fabrication results. The ANNs for the analysis and the synthesis of the electric probe are trained using the physical dimensions of the electric probe and the corresponding coupling bandwidth which is obtained using the finite element method. The ANNs for the error correction are trained using a very small set of the measurement results. Once trained, the ANN models provide the correct result approaching the accuracy of the measurement. The results from the ANN models show fairly good agreement with those of the measurement and they can be used as good initial design values.

  • PDF

A Forecasting System for KOSPI 200 Option Trading using Artificial Neural Network Ensemble (인공신경망 앙상블을 이용한 옵션 투자예측 시스템)

  • 이재식;송영균;허성회
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.489-497
    • /
    • 2000
  • After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.

  • PDF

A Methodology of Databased Energy Demand Prediction Using Artificial Neural Networks for a Urban Community (인공신경망을 이용한 데이터베이스 기반의 광역단지 에너지 수요예측 기법 개발)

  • Kong, Dong-Seok;Kwak, Young-Hun;Lee, Byung-Jeong;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.184-189
    • /
    • 2009
  • In order to improve the operation of energy systems, it is necessary for the urban communities to have reliable optimization routines, both computerized and manual, implemented in their organizations. However, before a production plan for the energy system units can be constructed, a prediction of the energy systems first needs to be determined. So, several methodologies have been proposed for energy demand prediction, but due to uncertainties in urban community, many of them will fail in practice. The main topic of this paper has been the development of a method for energy demand prediction at urban community. Energy demand prediction is important input parameters to plan for the energy planing. This paper presents a energy demand prediction method which estimates heat and electricity for various building categories. The method has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. Also, the ANN can extract the relationships among these variables by means of learning with training data. In this paper, the ANN have been applied in oder to correlate weather conditions, calendar data, schedules, etc. Space heating, cooling, hot water and HVAC electricity can be predicted using this method. This method can produce 10% of errors hourly load profile from individual building to urban community.

  • PDF

Artificial Neural Network with Firefly Algorithm-Based Collaborative Spectrum Sensing in Cognitive Radio Networks

  • Velmurugan., S;P. Ezhumalai;E.A. Mary Anita
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1951-1975
    • /
    • 2023
  • Recent advances in Cognitive Radio Networks (CRN) have elevated them to the status of a critical instrument for overcoming spectrum limits and achieving severe future wireless communication requirements. Collaborative spectrum sensing is presented for efficient channel selection because spectrum sensing is an essential part of CRNs. This study presents an innovative cooperative spectrum sensing (CSS) model that is built on the Firefly Algorithm (FA), as well as machine learning artificial neural networks (ANN). This system makes use of user grouping strategies to improve detection performance dramatically while lowering collaboration costs. Cooperative sensing wasn't used until after cognitive radio users had been correctly identified using energy data samples and an ANN model. Cooperative sensing strategies produce a user base that is either secure, requires less effort, or is faultless. The suggested method's purpose is to choose the best transmission channel. Clustering is utilized by the suggested ANN-FA model to reduce spectrum sensing inaccuracy. The transmission channel that has the highest weight is chosen by employing the method that has been provided for computing channel weight. The proposed ANN-FA model computes channel weight based on three sets of input parameters: PU utilization, CR count, and channel capacity. Using an improved evolutionary algorithm, the key principles of the ANN-FA scheme are optimized to boost the overall efficiency of the CRN channel selection technique. This study proposes the Artificial Neural Network with Firefly Algorithm (ANN-FA) for cognitive radio networks to overcome the obstacles. This proposed work focuses primarily on sensing the optimal secondary user channel and reducing the spectrum handoff delay in wireless networks. Several benchmark functions are utilized We analyze the efficacy of this innovative strategy by evaluating its performance. The performance of ANN-FA is 22.72 percent more robust and effective than that of the other metaheuristic algorithm, according to experimental findings. The proposed ANN-FA model is simulated using the NS2 simulator, The results are evaluated in terms of average interference ratio, spectrum opportunity utilization, three metrics are measured: packet delivery ratio (PDR), end-to-end delay, and end-to-average throughput for a variety of different CRs found in the network.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Evolutionary Optimization Design Technique for Control of Solid-Fluid Coupled Force (고체-유체 연성력 제어를 위한 진화적 최적설계)

  • Kim H.S.;Lee Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.503-506
    • /
    • 2005
  • In this study, optimization design technique for control of solid-fluid coupled force (sloshing) using evolutionary method is suggested. Artificial neural networks(ANN) and genetic algorithm(GA) is employed as evolutionary optimization method. The ANN is used to analysis of the sloshing and the genetic algorithm is adopted as an optimization algorithm. In the creation of ANN learning data, the design of experiments is adopted to higher performance of the ANN learning using minimum learning data and ALE(Arbitrary Lagrangian Eulerian) numerical method is used to obtain the sloshing analysis results. The proposed optimization technique is applied to the minimization of sloshing of the water in the tank lorry with baffles under 2 second lane change.

  • PDF

Real Time Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 실시간 홍수량 예측 및 해석)

  • Kang, Moon-Seong;Park, Seung-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.277-280
    • /
    • 2002
  • An artificial neural network model was developed to analyze and forecast real time river runoff from the Naju watershed, in Korea. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$ is great than 0.99) for calibration data sets. Increasing the time horizon for validation data sets, thus making the model suitable for flood forecasting, decreases the accuracy of the model. The resulting optimal EBPN models for forecasting real time runoff consists of ten rainfall and four and ten runoff data (ANN0410 and ANN1010 models). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$ is great than 0.92).

  • PDF

Comparison of Artificial Neural Networks for Low-Power ECG-Classification System

  • Rana, Amrita;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Electrocardiogram (ECG) classification has become an essential task of modern day wearable devices, and can be used to detect cardiovascular diseases. State-of-the-art Artificial Intelligence (AI)-based ECG classifiers have been designed using various artificial neural networks (ANNs). Despite their high accuracy, ANNs require significant computational resources and power. Herein, three different ANNs have been compared: multilayer perceptron (MLP), convolutional neural network (CNN), and spiking neural network (SNN) only for the ECG classification. The ANN model has been developed in Python and Theano, trained on a central processing unit (CPU) platform, and deployed on a PYNQ-Z2 FPGA board to validate the model using a Jupyter notebook. Meanwhile, the hardware accelerator is designed with Overlay, which is a hardware library on PYNQ. For classification, the MIT-BIH dataset obtained from the Physionet library is used. The resulting ANN system can accurately classify four ECG types: normal, atrial premature contraction, left bundle branch block, and premature ventricular contraction. The performance of the ECG classifier models is evaluated based on accuracy and power. Among the three AI algorithms, the SNN requires the lowest power consumption of 0.226 W on-chip, followed by MLP (1.677 W), and CNN (2.266 W). However, the highest accuracy is achieved by the CNN (95%), followed by MLP (76%) and SNN (90%).