• 제목/요약/키워드: ANGULAR-VELOCITY

검색결과 914건 처리시간 0.027초

되먹임 효과를 이용한 회전체의 속도측정 (Measurement of angular velocity using the self-mixing effect of semiconductor laser)

  • 이병욱
    • 한국광학회지
    • /
    • 제11권4호
    • /
    • pp.250-254
    • /
    • 2000
  • 반도체 레이저 광원의 되먹임 효과를 이용하여 레이저 도플러 속도계를 구현하였다. 움직이는 물체의 표면에 조사된 레이저광이 산란될 때 산란광은 물체의 속도에 비례한 도플러 변이를 일으킨다. 산란광의 일부를 레이저 공진기 내부로 입사키면 공진기 안에서는 발진광과 입사된 산란광이 혼합되어 두 개 광 사이의 차주파수로 레이저 전류가 변조되는 원리를 이용한 것이다. 본 실험에서는 원형 회전체에 레이저를 조사할 때 발생하는 산란광을 사용하여 회전 속도와 도플러 편이 주파수와의 관계를 비교하였다. 또한 회전면에 대한 레이저 입사 각도에 따른 도플러 주파수의 변화를 관찰하였다. 이로부터 도플러 주파수와 회전체 각속도 사이의 비례 관계 및 측정광의 입사 각도와의 선형성을 확인하였다.

  • PDF

Yaw 를 가진 긴 관통자와 경사판재의 고속충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impacts of Yawed Long Rod Projectile Against Thin-Plate)

  • 유요한
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1426-1437
    • /
    • 2002
  • Using the Lagrangian explicit time-integration finite element code NET3D which can treat three-dimensional high-velocity impact problems, oblique penetration processes of long rod projectile with yaw against thin plate are simulated. Through the comparison of simulation result with experimental result and other code's computational result, the adaptability and accuracy of NET3D is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. Main research contents to be handled in this paper include the followings. First, the accuracy and efficiency estimation of NET3D code result obtained from the oblique penetration simulations of long rod projectile with yaw against thin plate. Second, the effect of increasing impact velocity. Third, the effect of initial yaw for the spaced-plate target. Residual velocities, residual lengths, angular velocities, and final deformed configurations obtained from the NET3D computations are compared with the experimental results and other code's computational results such as Eulerian code MESA and Lagrangian code EPIC. As a result of comparisons, it has been found that NET3D code is superior to EPIC code and MESA code in the prediction capability of residual velocity and residual length of penetrator. The key features obtained from the experiment can be successfully reproduced through NET3D simulations. Throughout the study, the applicability and accuracy of NET3D as a metallic armor system design tool is verified.

태권도 540도 뒤후려차기 동작의 운동역학적 분석 (A Biomechanical Analysis of 540o Dwihuryeochagi of Taekwondo)

  • 강동권;강서정;유연주
    • 한국운동역학회지
    • /
    • 제23권1호
    • /
    • pp.19-24
    • /
    • 2013
  • The aim of the study was a quantitative analysis of elite athlete's $540^{\circ}$ Dwihuryeochagi and effects of ground movements to the jumping height and kicking velocity. Eleven elite players(Taekwondo demonstration team) participated in this study. In order to get the kinetic and kinematic variables, ten Vicon cameras and a force plate were used. Foot segment velocity(FSV), vertical ground reaction force(GRF), impulse, ground time(GT) in phase 1, trunk angular velocity(TAV), vertical center of gravity(COG), flight time(FT) in phase 2 and kicking leg segment velocity(KSV) in phase 3 were measured and analyzed. Results indicated that there were similar patterns of variables among phases between subjects. Non-significant correlation(r=.145) between flight time(FT) and impulse was found. Also non-significant correlation(r=.119) between center of gravity(COG) and impulse was found. In conclusions, there were similar strategies in phase 1, phase 2, and phase 3 between subjects.

곡관덕트내의 입구영역에서 난류 맥동유도의 유동특성 (Flows Characteristics of Developing Turbulent Pulsating Flows in a curved Square Duct)

  • 봉태근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.533-542
    • /
    • 1999
  • In this study the flow characteristics of developing turbulent pulsating flows in a square-sec-tional 180。 curved duct are investigated experimentally. The experimental study of air flow in a square-sectional curved duct is carried out to measure axial velocity distribution secondary flow velocity profiles and wall shear stress distributions by using a Laser Doppler Velocimetry system with the data acquisition and processing system of Rotating Machinery Resolver (RMR) and PHASE software at the entrance region of the duct which is divided into 7 sections from the inlet(${{\o}}=0_{\circ}$) to the outlet (${{\o}}=180_{\circ}$) in $30_{\circ}$ intervals. The results obtained from the study are summarized as follows: (1) The time-averaged critical Dean number of turbulent pulsating flow(De ta, cr) is greater than $75{\omega}+$ It is understood that the critical Dean number and the critical Reynolds number are related to the dimensionless angular frequency in a curved duct. (2) Axial velocity profiles of turbulent pulsating flows are of an annular type similar to those of turbulent stead flows. (3) Secondary flows of trubulent pulsating flows are strong and complex at the entrance region. As velocity amplitudes(A1) become larger secondary flows become stronger. (4) Wall shear stress distributions of turbulent pulsating flows in a square-sectional $180_{\circ}$ curved duct are exposed variously in the outer wall and are stabilized in the inner wall without regard to the phase angle.

  • PDF

센서네트워크 내에서 TDOA 측정치 기반의 이동 표적 속도 정보 추정 (TDOA Based Moving Target Velocity Estimation in Sensor Network)

  • 김용휘;박민수;박진배;윤태성
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.445-450
    • /
    • 2015
  • In the moving target problem, the velocity information of the moving target is very important as well as the high accuracy position information. To solve this problem, active researches are being conducted recently with combine the Time Difference of Arrival (TDOA) and Frequency Delay of Arrival(FDOA) measurements. However, since the FDOA measurement is utilizing the Doppler effect due to the relative velocity between the target source and the receiver sensor, it may be difficult to use the FDOA measurement if the moving target speed is not sufficiently fast. In this paper, we propose a method for estimating the position and the velocities of the target by using only the TDOA measurements for the low speed moving target in the indoor environment with sensor network. First, the target position and heading angle are obtained from the estimated positions of two attached transmitters on the target. Then, the target angular and linear velocities are also estimated. In addtion, we apply the Instrumental Variable (IV) technique to compensate the estimation error of the estimated target velocity. In simulation, the performance of the proposed algorithm is verified.

마루운동 제자리 뒤공중돌기 동작의 운동학적 분석 (Kinematical Analysis of the Back Somersault in Floor Exercise)

  • 정남주
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.157-166
    • /
    • 2007
  • This study was to compare the major kinematic factors between the success and failure group on performing the back somersault motion in floor exercise. Three gymnasts(height : $167.3{\pm}2.88cm$, age : $22.0{\pm}1.0years$, body weight : $64.4{\pm}2.3kg$) were participated in this study. The kinematic data was recorded at 60Hz with four digital video camera. Two successful motions and failure motions for each subject were selected for three dimensional analysis. 1. Success Trail It was appear that success trail was larger than failure group in projection velocity, but success trail was smaller than failure trail in projection angle. Also it was appear that success trail was longer than failure group in the time required. Hand segment velocity and maximum velocity in success trail were larger than those in failure trail, and this result was increasing the projection velocity and finally increasing the vertical height of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle was contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle was maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of success trail extended more than those of failure trail. in this base, success trail in upward phase(p3) 2. Failure Trail It was appear that failure trail was smaller than success trail in projection velocity, but failure trail was larger than success trail in projection angle. Also it was appear that failure trail was more short than success trail in the time required. Hand segment velocity and maximum velocity in failure trail were smaller than those in success trail, and this result was reducing the projection velocity and finally reducing the vertical high of center of mass. At the take-off(event 2), flection amount of hip and knee joint angle wasn't contributed to the optimal condition for the take-off and at the peak point, hip and knee joint angle wasn't maximum flexed for reducing the moment of inertia. Also in this point, upper extremities of failure trail didn't extended more than those of success trail.

유한요소해석을 이용한 성형 롤 설계 (Design of Forming Rolls using Finite Element Analysis)

  • 김광희
    • 한국해양공학회지
    • /
    • 제13권4호통권35호
    • /
    • pp.75-81
    • /
    • 1999
  • Roll forming process is simulated with a commercial FEM code LS-DYNA. The rolls are treated as rigid bodies rotating with a constant angular velocity. The strip and the rolls are modeled with 4-node plate elements. It is assumed that the nodes along the front end of the strip move along paths given by sine functions. It is found that the analysis can be applied to the optimal design of forming rolls. With these analyses, it is expected that forming defects can be avoided and process development efforts can be reduced.

  • PDF

PRECESSION OF SUPERMASSIVE BLACK HOLES

  • PARK SEOK JAE
    • 천문학회지
    • /
    • 제28권1호
    • /
    • pp.71-75
    • /
    • 1995
  • In the previous work we made a long term evolution code for the central black hole in an active galactic nucleus under the assumption that the Blandford-Znajek process is the source of the emission. Using our code we get the evolution of the angular velocity of the precession for a supermassive black hole. We consider a hole at the center of an axisymmetric, ellipsoidal galactic nucleus. Our numerical results show that, only for the cases such that the stellar density or the mass of the black hole is large enough, the precession of the black hole - presumably the precession of the galactic jet - is interestingly large.

  • PDF

수평형 마이크로 자이로스코프의 비어링 현상 및 동특성 (Veering Phenomena and Dynamic Characteristics in Lateral Micro-Gyroscope)

  • 정호섭;박규연
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.132-140
    • /
    • 2001
  • The vibratory gyroscope can effectively measure the angular velocity as the oscillating and position-sensing mode are exactly tuned. The veering Phenomenon impedes the exact tuning, which is caused by the mode coupling of two modes. In this paper, the gyroscope's structure with two frames is introduced to minimize the veering phenomenon that destabilizes the tuning process of oscillating and position-sensing mode. Experimental results show that the Proposed structure can achieve the mode intersection without veering phenomenon.

  • PDF

Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구 (Neural network based position estimation of mobile robot in slippery environment)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF