• 제목/요약/키워드: ANGPTL2

검색결과 5건 처리시간 0.018초

Dietary modification reduces serum angiopoietin-like protein 2 levels and arterial stiffness in overweight and obese men

  • Park, Jiyeon;Choi, Youngju;Mizushima, Ryoko;Yoshikawa, Toru;Myoenzono, Kanae;Tagawa, Kaname;Matsui, Masahiro;Tanaka, Kiyoji;Maeda, Seiji
    • 운동영양학회지
    • /
    • 제23권3호
    • /
    • pp.39-44
    • /
    • 2019
  • [Purpose] Weight loss can reduce obesity-induced arterial stiffening that is attributed to decreased inflammation. Angiopoietin-like protein 2 (ANGPTL2) is a pro-inflammatory adipokine that is upregulated in obesity and is important in the progression of atherosclerosis and cardiovascular disease. The purpose of this study is to investigate the effects of dietary modification on circulating ANGPTL2 levels and arterial stiffness in overweight and obese men. [Methods] Twenty-two overweight and obese men (with mean age of 56 ± 2 years and body mass index of 28.6 ± 2.6 kg/m2) completed a 12-week dietary modification program. We measured the arterial compliance and β-stiffness index (as the indices of arterial stiffness) and serum ANGPTL2 levels before and after the program. [Results] After the 12-week dietary modification, body mass and daily energy intake were significantly reduced. Arterial compliance was significantly increased and β-stiffness index was significantly decreased after the 12-week dietary modification program. Serum ANGPTL2 levels were significantly decreased. Also, the changes in arterial compliance were negatively correlated with the changes in serum ANGPTL2 levels, whereas the changes in β-stiffness index were positively correlated with the changes in serum ANGPTL2 levels. [Conclusion] These results suggest that the decrease in circulating ANGPTL2 levels can be attributed to the dietary modification-induced reduction of arterial stiffness in overweight and obese men.

mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

  • Zhang, Jing;Jing, Jiong-Jie;Jia, Xia-Li;Qiao, Li-Ying;Liu, Jian-Hua;Liang, Chen;Liu, Wen-Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권5호
    • /
    • pp.615-623
    • /
    • 2016
  • Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

Analysis of gene expression during mineralization of cultured human periodontal ligament cells

  • Choi, Hee-Dong;Noh, Woo-Chang;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • 제41권1호
    • /
    • pp.30-43
    • /
    • 2011
  • Purpose: Under different culture conditions, periodontal ligament (PDL) stem cells are capable of differentiating into cementoblast-like cells, adipocytes, and collagen-forming cells. Several previous studies reported that because of the stem cells in the PDL, the PDL have a regenerative capacity which, when appropriately triggered, participates in restoring connective tissues and mineralized tissues. Therefore, this study analyzed the genes involved in mineralization during differentiation of human PDL (hPDL) cells, and searched for candidate genes possibly associated with the mineralization of hPDL cells. Methods: To analyze the gene expression pattern of hPDL cells during differentiation, the hPDL cells were cultured in two conditions, with or without osteogenic cocktails (${\beta}$-glycerophosphate, ascorbic acid and dexamethasone), and a DNA microarray analysis of the cells cultured on days 7 and 14 was performed. Reverse transcription-polymerase chain reaction was performed to validate the DNA microarray data. Results: The up-regulated genes on day 7 by hPDL cells cultured in osteogenic medium were thought to be associated with calcium/iron/metal ion binding or homeostasis (PDE1A, HFE and PCDH9) and cell viability (PCDH9), and the down-regulated genes were thought to be associated with proliferation (PHGDH and PSAT1). Also, the up-regulated genes on day 14 by hPDL cells cultured in osteogenic medium were thought to be associated with apoptosis, angiogenesis (ANGPTL4 and FOXO1A), and adipogenesis (ANGPTL4 and SEC14L2), and the down-regulated genes were thought to be associated with cell migration (SLC16A4). Conclusions: This study suggests that when appropriately triggered, the stem cells in the hPDL differentiate into osteoblasts/cementoblasts, and the genes related to calcium binding (PDE1A and PCDH9), which were strongly expressed at the stage of matrix maturation, may be associated with differentiation of the hPDL cells into osteoblasts/cementoblasts.

cDNA Microarray를 이용한 구강편평세포암종 세포주에서 $Taxol^{(R)}$과 Cyclosporin A로 유도된 유전자 발현양상 (GENE EXPRESSION PATTERNS INDUCED BY $TAXOL^{(R)}$ AND CYCLOSPORIN A IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE USING CDNA MICROARRAY)

  • 김용관;이재훈;김철환
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권3호
    • /
    • pp.202-212
    • /
    • 2006
  • It is well-known that paclitaxel($Taxol^{(R)}$), which is extracted from the pacific and English yew, has been used as a chemotherapeutic agent for ovarian carcinoma and advanced breast carcinoma and Cyclosporin A, which is highly lipophilic cyclic peptide and isolated from a fungus, has been also used as an useful immunosuppressive drug after transplantation and is associated with cellular apoptosis. Since 1953, in which James Watson, Rosalind Franklin and Francis Crick discovered the double helical structure of DNA, a few kinds of techniques for identifying gene expression have been developed. In postgenomic period, many of researchers have used the DNA microarray which is high throughput screening technique to screen large numbers of gene expression simultaneously. In this study, we searched and screened the gene expression in the oral squamous cell carcinoma cell lines treated with $Taxol^{(R)}$, cyclosporin or cyclosporin combined with $Taxol^{(R)}$ using cDNA microarray. The results were as following; 1. It was useful that the appropriate concentration of Cyclosporin A and $Taxol^{(R)}$ used in oral squamous cell carcinoma cell line was under 1${\mu}g/ml$ and 3${\mu}g/ml$. 2. In the experimental group in which $Taxol^{(R)}$ and $Taxol^{(R)}$ + Cyclosporin A were used, the cell growth was extremely decreased. 3. In the group in which Cyclosporin A was used, the MTT assay was rarely decreased which means the activity of succinyl dehydrogenase is remained in mitochondria but in the group in which the mixture of Cyclosporin A and $Taxol^{(R)}$ were used, the MTT assay was extremely decreased. 4. In the each group in which Cyclosporin A(3 ${\mu}g/ml$) and $Taxol^{(R)}$(1 ${\mu}g/ml$) were used, the cell arrest was appeared in $G_2/M$ phase and in the group in which $Taxol^{(R)}$(3 ${\mu}g/ml$) was used, the cell arrest was appeared in both S phase and $G_2/M$ phase. 5. In the oral squamous cell carcinoma cell line treated with $Taxol^{(R)}$, several genes including ANGPTL4, RALBP1 and TXNRD1, associated with apoptosis, SUI1, MAC30, RRAGA and CTGF, related with cell growth, HUS1 and DUSP5, related with cell cycle and proliferation, ATF4 and CEBPG, associated with transcription factor, BTG1 and VEGF, associated with angiogenesis, FDPS, FCER1G, GPA33 and EPHA4 associated with signal transduction and receptor activity and AKR1C2 and UGTA10 related with carcinogenesis were detected in increased levels. The genes that showed increaced expression in the oral squamous cell carcinoma cell line treated with Cyclosporin A were CYR61, SERPINB2, SSR3 and UPA3A which are known as genes associated with cell growth, carcinogenesis, receptor activity and transcription factor. The genes expressed in the HN22 cell line treated with cyclosporin combined with $taxol^{(R)}$ were ALCAM and GTSE1 associated with cancer invasiveness and cell cycle regulation.

이종 이식된 구강편평세포 암종에서 Paclitaxel ($Taxol^{(R)}$)의 항암 효과 (THE ANTICANCER EFFECT OF PACLITAXEL($Taxol^{(R)}$) IN ORAL SQUAMOUS CELL CARCINOMA XENOGRAFT)

  • 김기환;김철환;한세진;이재훈
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권2호
    • /
    • pp.95-110
    • /
    • 2006
  • The treatment for oral and maxillofacial carcinoma with chemotherapeutic agents is evaluated by many effective methods to reduce the tumor mass and cancer cell proliferation. However these chemotherapy have many serious side effects, such as bone marrow suppression, renal toxicity, G-I troubles. Therefore a possible approach to develop a clinically applicable chemotherapeutic agent is to screen anticancer activity of Taxol which is known to have very little side effect and have been used to breast cancer and ovarian carcinoma. Taxol is a new anti-microtubular anti-cancer agent extracted from the bark of the Pacific yew, Taxus brevifolia. Paclitaxel(Taxol) acts by promoting tubulin polymerization and over stabilizing microtubules agianst depolymerization. Despite the constant improvements of methods of the cancer treatment especially chemotherapy, the rate of cancer metastasis and recurrent are not decreased. Thus the investigation of new drug which have very little side effect and a possible clinically application continues to be a high priority. Considering that the Taxol have shown very effective chemotherapeutic agent with relatively low toxicity in many solid tumors, it deserves to evaluate its efficacy in oral squamous cell carcinoma. In this study, to investigate the in-vivo and in-vitro anti-cancer efficacy of Taxol in oral squamous cell carcinoma and lastly, the potency of Paclitaxel in the clinical application for oral cancer was evaluated. In vivo study, after HN22 cell line were xenografted in nude mice, the growth of tumor mass was observed, 3 mg/Kg taxol was injected intraperitoneally into nude mice containing tumor mass. The methods of these study were measurement of total volume of tumor mass, histopathologic study, immunohistochemical study, drug resistance assay, growth curve, MTT assay, flow cytometry, cDNA microarray in vivo and in vitro. The results were obtained as following. 1. The visual inspection of the experimental group showed that the volume of the tumor mass was slightly decreased but no significant difference with control group. 2. Ki-67 index was decreased at weeks 4 in experimental group. 3. Microscopic view of the xenografted tumor mass showed well differentiated squamous cell carcinoma and after Taxol injection, some necrotic tissue was seen weeks 4. 4. The growth curve of the tumor cells were decreased after 1day Taxol treatment. 5. According to the MTT assay, HN22 cell line showed relative drug resistancy above $5\;{\mu}g/ml$ concentrations of Taxol. 6. In drug resistance assay, the decrease of cell counts was seen relatively according to concentration. 7. In Flow cytometry, G2M phase cell arrests were seen in low concentration of the Taxol, while S phase cell arrests were seen in high concentration of the Taxol. 8. Using cDNA microarray technique, variable gene expression of ANGPTL4, TXNRD1, FAS, RRAGA, CTGF, CYCLINEA, P19, DUSP5, CEBPG, BTG1 were detacted in the oral squamous cell carcinoma cell after taxol treatment. In this study paclitaxel is effective against oral squamous cell carcinoma cell lines in vitro, but week effect was observed in vivo. So we need continuous study about anticancer effect of taxol in vivo in oral squamous cell carcinoma.