• 제목/요약/키워드: ANASTASIA

검색결과 27건 처리시간 0.02초

Retrofit of a UK residential property to achieve nearly zero energy building standard

  • Salem, Radwa;Bahadori-Jahromi, Ali;Mylona, Anastasia;Godfrey, Paulina;Cook, Darren
    • Advances in environmental research
    • /
    • 제7권1호
    • /
    • pp.13-28
    • /
    • 2018
  • It is currently agreed upon that one of the major challenges in the construction industry is the energy efficiency of existing buildings. The World Meteorological Organisation (WMO) and United Nations (UN) have reported that the concentration of global atmospheric carbon dioxide has increased by an average of 50%, a record speed, from 2015 to 2016. The housing sector contributes to 45% of the UK's carbon emissions. To help tackle some of those issues the recast Energy Performance Building Directive (EBPD) has introduced Nearly Zero Energy Buildings (NZEBs) in the coming years (including buildings that will undergo refurbishment/renovations). This paper will explore the retrofitting of a UK residential dwelling using Thermal Analysis Simulation (TAS, EDSL) software by focusing on building fabric improvements and usage of on-site renewables. The CIBSE Test Reference Year (TRY) weather data has been selected to examine the performance of the building under current and future climate projections. The proposed design variables were finally implemented in the building altogether on TAS. The simulation results showed a reduction in the building's annual energy consumption of $122.64kWh/m^2$ (90.24%). The greatest savings after this were achieved for the annual reduction in carbon emissions and avoided emissions, which were 84.59% and $816.47kg/CO_2$, respectively.

Variation in the number of nucleoli and incomplete homogenization of 18S ribosomal DNA sequences in leaf cells of the cultivated Oriental ginseng (Panax ginseng Meyer)

  • Chelomina, Galina N.;Rozhkovan, Konstantin V.;Voronova, Anastasia N.;Burundukova, Olga L.;Muzarok, Tamara I.;Zhuravlev, Yuri N.
    • Journal of Ginseng Research
    • /
    • 제40권2호
    • /
    • pp.176-184
    • /
    • 2016
  • Background: Wild ginseng, Panax ginseng Meyer, is an endangered species of medicinal plants. In the present study, we analyzed variations within the ribosomal DNA (rDNA) cluster to gain insight into the genetic diversity of the Oriental ginseng, P. ginseng, at artificial plant cultivation. Methods: The roots of wild P. ginseng plants were sampled from a nonprotected natural population of the Russian Far East. The slides were prepared from leaf tissues using the squash technique for cytogenetic analysis. The 18S rDNA sequences were cloned and sequenced. The distribution of nucleotide diversity, recombination events, and interspecific phylogenies for the total 18S rDNA sequence data set was also examined. Results: In mesophyll cells, mononucleolar nuclei were estimated to be dominant (75.7%), while the remaining nuclei contained two to four nucleoli. Among the analyzed 18S rDNA clones, 20% were identical to the 18S rDNA sequence of P. ginseng from Japan, and other clones differed in one to six substitutions. The nucleotide polymorphism was more expressed at the positions 440-640 bp, and distributed in variable regions, expansion segments, and conservative elements of core structure. The phylogenetic analysis confirmed conspecificity of ginseng plants cultivated in different regions, with two fixed mutations between P. ginseng and other species. Conclusion: This study identified the evidences of the intragenomic nucleotide polymorphism in the 18S rDNA sequences of P. ginseng. These data suggest that, in cultivated plants, the observed genome instability may influence the synthesis of biologically active compounds, which are widely used in traditional medicine.

Comparison of Multiple Chronic Obstructive Pulmonary Disease (COPD) Indices in Chinese COPD Patients

  • Zhang, Jinsong;Miller, Anastasia;Li, Yongxia;Lan, Qinqin;Zhang, Ning;Chai, Yanling;Hai, Bing
    • Tuberculosis and Respiratory Diseases
    • /
    • 제81권2호
    • /
    • pp.116-122
    • /
    • 2018
  • Background: Chronic obstructive pulmonary disease (COPD) is a serious chronic condition with a global impact. Symptoms of COPD include progressive dyspnea, breathlessness, cough, and sputum production, which have a considerable impact on the lives of patients. In addition to the human cost of living with COPD and the resulting death, COPD entails a huge economic burden on the Chinese population, with patients spending up to one-third of the average family income on COPD management in some regions is clinically beneficial to adopt preventable measures via prudent COPD care utilization, monetary costs, and hospitalizations. Methods: Toward this end, this study compared the relative effectiveness of six indices in predicting patient healthcare utilization, cost of care, and patient health outcome. The six assessment systems evaluated included the three multidimensional Body mass index, Obstruction, Dyspnea, Exercise capacity index, Dyspnea, Obstruction, Smoking, Exacerbation (DOSE) index, and COPD Assessment Test index, or the unidimensional measures that best predict the future of patient healthcare utilization, cost of care, and patient health outcome among Chinese COPD patients. Results: Multiple linear regression models were created for each healthcare utilization, cost, and outcome including a single COPD index and the same group of demographic variables for each of the outcomes. Conclusion: We conclude that the DOSE index facilitates the prediction of patient healthcare utilization, disease expenditure, and negative clinical outcomes. Our study indicates that the DOSE index has a potential role beyond clinical predictions.

Top 50 cited articles on dental stem cell research

  • Kodonas, Konstantinos;Fardi, Anastasia;Gogos, Christos;Economides, Nikolaos
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.17.1-17.10
    • /
    • 2020
  • Objectives: Citation analysis provides a unique insight into how scientific interests and research trends have changed over time. The aim of this study was to report on the 50 top-cited papers in dental stem cell research using the Science Citation Index Expanded provided by the Web of Science database to determine the academic importance of each contribution. Materials and Methods: After the screening, article title and type, total citations and citations per year, publication journal, publication year, first and senior authors, country of origin, institution, and university of reprint author were documented for the 50 top-cited articles in dental stem cell research. Keyword analysis was performed to determine which keywords were most/least popular. Results: Top 50-cited articles were cited between 179 to 2,275 times. The majority of papers were published in 2008 and originated from the United States with the highest contribution from the National Institute of Dental & Craniofacial Research. Journal of Dental Research published the highest number of top-cited articles, followed by Stem Cells and Journal of Endodontics. The greatest number of articles was published by two individual authors, Shi and Gronthos. Among 197 unique keywords, dental pulp stem cells and mesenchymal stem cells were the most frequently used. Thirty-eight of the 50 most cited articles were original articles, and 37 of them were in the field of basic science. Conclusions: Basic science studies in dental stem cell research published in high impact factor journals had the highest citation rates.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

Comparing building performance of supermarkets under future climate change: UK case study

  • Agha Usama Hasan;Ali Bahadori-Jahromi;Anastasia Mylona;Marco Ferri;Hexin Zhang
    • Advances in Energy Research
    • /
    • 제8권1호
    • /
    • pp.73-93
    • /
    • 2022
  • Focus on climate change and extreme weather conditions has received considerable attention in recent years. Civil engineers are now focusing on designing buildings that are more eco-friendly in the face of climate change. This paper describes the research conducted to assess the impact of future climate change on energy usage and carbon emissions in a typical supermarket at multiple locations across the UK. Locations that were included in the study were London, Manchester, and Southampton. These three cities were compared against their building performance based on their respective climatic conditions. Based on the UK Climatic Projections (UKCP09), a series of energy modelling simulations which were provided by the Chartered Institute of Building Service Engineers (CIBSE) were conducted on future weather years for this investigation. This investigation ascertains and quantifies the annual energy consumption, carbon emissions, cooling, and heating demand of the selected supermarkets at the three locations under various climatic projections and emission scenarios, which further validates annual temperature rise as a result of climatic variation. The data showed a trend of increasing variations across the UK as one moves southwards, with London and Southampton at the higher side of the spectrum followed by Manchester which has the least variability amongst these three cities. This is the first study which investigates impact of the climate change on the UK supermarkets across different regions by using the real case scenarios.

A scientometric, bibliometric, and thematic map analysis of hydraulic calcium silicate root canal sealers

  • Anastasios Katakidis;Konstantinos Kodonas;Anastasia Fardi;Christos Gogos
    • Restorative Dentistry and Endodontics
    • /
    • 제48권4호
    • /
    • pp.41.1-41.17
    • /
    • 2023
  • Objectives: This scientometric and bibliometric analysis explored scientific publications related to hydraulic calcium silicate-based (HCSB) sealers used in endodontology, aiming to describe basic bibliometric indicators and analyze current research trends. Materials and Methods: A comprehensive search was conducted in Web of Science and Scopus using specific HCSB sealer and general endodontic-related terms. Basic research parameters were collected, including publication year, authorship, countries, institutions, journals, level of evidence, study design and topic of interest, title terms, author keywords, citation counts, and density. Results: In total, 498 articles published in 136 journals were retrieved for the period 2008-2023. Brazil was the leading country, and the universities of Bologna in Italy and Sao Paolo in Brazil were represented equally as leading institutions. The most frequently occurring keywords were "calcium silicate," "root canal sealer MTA-Fillapex," and "biocompatibility," while title terms such as "calcium," "sealers," "root," "canal," "silicate based," and "endodontic" occurred most often. According to the thematic map analysis, "solubility" appeared as a basic theme of concentrated research interest, and "single-cone technique" was identified as an emerging, inadequately developed theme. The co-occurrence analysis revealed 4 major clusters centered on sealers' biological and physicochemical properties, obturation techniques, retreatability, and adhesion. Conclusions: This analysis presents bibliographic features and outlines changing trends in HCSB sealer research. The research output is dominated by basic science articles scrutinizing the biological and specific physicochemical properties of commonly used HCSB sealers. Future research needs to be guided by studies with a high level of evidence that utilize innovative, sophisticated technologies.