• Title/Summary/Keyword: AMTEC

Search Result 15, Processing Time 0.017 seconds

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C.;Feng, C.Y.;Matsuura, T.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.3 no.3
    • /
    • pp.181-200
    • /
    • 2012
  • At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

Cycle Analysis of an Alkali Metal Thermo-Electric Converter for Small Capillary Type (소형 모세관식 알카리 금속 열전변환소자의 사이클해석)

  • Yoon, Suk-Goo;Ku, Jae-Hyun;Lee, Jae-Keun;Tanaka, Kotaro
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.956-961
    • /
    • 2000
  • This paper describes the design of a small size Alkali Metal Thermal to Electric Converter (AMTEC) which employs a capillary structure for recirculating sodium working fluid. The cycle is based on the simple and small capillary type ${\beta}"$ -alumina and wick tube element. The proposed cell consists of the 37 conversion elements with capillary tube of $50{\mu}m$ in diameter and the sealed cylindrical vessel of 22mm in outer diameter. Results on the cycle analysis of sodium flow and heat transfer in the cell showed that the expected power output was 4.65W and the conversion efficiency was 19% for the source temperature of 900K.

  • PDF

Implementation of Postprocessor for CSCM Code by Using Graphic User Interface (그래픽 환경을 이용한 CSCM 수치해석 코드에서의 후처리 과정 개발)

  • Makhsuda Juraeva;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.76-81
    • /
    • 2003
  • 전산유체공학에서 그래픽 인터페이스를 이용한 후처리 기법은 수렴된 해의 물리적 구조 및 특성을 이해하는데 있어 매우 중요하다. 따라서 본 연구에서는 그래픽 환경을 이용하여 압축성 유동 해석 코드인 CSCM 수치해석 코드의 후처리 과정을 개발함으로서 코드전체의 완전성을 높이고자 하였다. Visual C++프로그램을 이용하여 Mesh plot, XY plot, 벡터 plot 및 contour plot이 가능한 후처리 프로그램을 개발하였으며 실시간으로 수치해석의 수렴정도를 파악할 수 있는 잔류항에 대한 그래픽 기능을 제공하게 하였다. 개발된 후처리 과정을 2차원 Compression ramp 및 Bump 문제의 해석결과에 대해 본 연구결과와 현재 유체해석의 후처리 프로그램으로 많은 사용자를 확보하고 있는 AMTEC사의 Tecplot 8.0 버전의 결과를 서로 비교해 본 결과 좋은 일치성을 보여주었다.

  • PDF

A Study on the Structural Design and Structural Analysis for Small Yacht (소형 요트의 기본 구조 설계 및 구조 해석 기법에 대한 연구)

  • Shin, Jong-Gye;Lee, Jae-Yeol;Lee, Jang-Hyun;Van, Suak-Ho;Lee, Sang-Hong;Yoo, Jae-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.75-86
    • /
    • 2006
  • The scantling and structural design work is done during the initial stage in yacht design. This paper studies a procedure of the structural design for yacht with an illustrative design. Scantling of structural members and loads are defined based on the rules suggested by ISO(International Standard Organization) and ABS(American Bureau of Shipping). Also, FEA(Finite Element Analysis) model is presented for a practical guide for structural analysis. An equivalent structural element is used to simplify the composite material for the analysis.

Development of Alkali Metal Thermal-to-Electric Converter Unit Cells Using Mo/TiN Electrode

  • Seog, Seung-won;Choi, Hyun-Jong;Kim, Sun-Dong;Lee, Wook-Hyun;Woo, Sang-Kuk;Han, Moon-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.3
    • /
    • pp.200-204
    • /
    • 2017
  • Molybdenum (Mo), an electrode material of alkali metal thermal-to-electric converters (AMTEC), facilitates grain growth behavior and forms Mo-Na-O compounds at high operating temperatures, resulting in reduced performance and shortened lifetime of the cell. Mo/TiN composite materials have been developed to provide a solution for such issues. Mo is a metal that possesses excellent electrical properties, and TiN is a ceramic compound with high-temperature durability and catalytic activity. In this study, a dip-coating process with an organic solvent-based slurry was used as an optimal coating method to achieve homogeneity and stability of the electrodes. Cell performance was evaluated under various conditions such as the number of coatings, ranging from 1 to 3 times, and heat treatment temperatures of $800-1100^{\circ}C$. The results confirmed that the cell yielded a maximum power of 9.99 W for the sample coated 3 times and heat-treated at $900^{\circ}C$.