• Title/Summary/Keyword: AMPK pathway

Search Result 115, Processing Time 0.025 seconds

Valproic Acid-induced PPAR-alpha and FGF21 Expression Involves Survival Response in Hepatocytes (Valproic acid에 의해 증가하는 PPAR-alpha 및 FGF21의 발현이 간세포 생존에 미치는 영향)

  • Bakhovuddin Azamov;Yeowon Kang;Chanhee Lee;Wan-Seog Shim;Kwang Min Lee;Parkyong Song
    • Journal of Life Science
    • /
    • v.34 no.4
    • /
    • pp.227-235
    • /
    • 2024
  • Hepatocyte damage caused by medications or herbal products is one of the important problem when these compounds are chronically administrated. Thus, improving hepatocyte survival during treatment offers a wide range of opportunities. Valproic acid (VPA), a branched short-chain fatty acid derived from naturally occurring valeric acid, is commonly used to treat epilepsy and seizures. Although VPA exerts numerous effects in cancer, HIV therapy, and neurodegenerative disease, its effects on the liver and its mechanism of action have not been fully elucidated. Here, we demonstrated that VPA caused moderate liver cell toxicity and apoptosis. Interestingly, VPA treatment increased transcription levels of PPAR alpha (PPAR-α) and fibroblast growth factor 21 (FGF21) in murine (Hepa1c1c7) hepatoma cells in a time and concentration dependent manner. VPA-induced FGF21 expression was significantly weaker under PPAR-α silencing condition than in cells transfected with non-targeting control siRNA. Subsequent experiments showed that cell viability was significantly lowered when the FGF21 signaling pathway was blocked by FGF receptor antagonist. Finally, we further determined that AMPK phosphorylation was not responsible for VPA-induced FGF21 expression and PPAR-a increments. These results indicate that increases of FGF21 expression alleviate VPA-induced hepatic toxicity, thereby making FGF21 a potential biomarker for predicting liver damage during VPA treatments.

Benefits of Metformin Use for Cholangiocarcinoma

  • Kaewpitoon, Soraya J;Loyd, Ryan A;Rujirakul, Ratana;Panpimanmas, Sukij;Matrakool, Likit;Tongtawee, Taweesak;Kootanavanichpong, Nusorn;Kompor, Ponthip;Chavengkun, Wasugree;Kujapun, Jirawoot;Norkaew, Jun;Ponphimai, Sukanya;Padchasuwan, Natnapa;Pholsripradit, Poowadol;Eksanti, Thawatchai;Phatisena, Tanida;Kaewpitoon, Natthawut
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8079-8083
    • /
    • 2016
  • Metformin is an oral anti-hyperglycemic agent, which is the most commonly prescribed medication in the treatment of type-2 diabetes mellitus. It is purportedly associated with a reduced risk for various cancers, mainly exerting anti-proliferation effects on various human cancer cell types, such as pancreas, prostate, breast, stomach and liver. This mini-review highlights the risk and benefit of metformin used for cholangiocarcinoma (CCA) prevention and therapy. The results indicated metformin might be a quite promising strategy CCA prevention and treatment, one mechanism being inhibition of CCA tumor growth by cell cycle arrest in both in vitro and in vivo. The AMPK/mTORC1 pathway in intrahepatic CCA cells is targeted by metformin. Furthermore, metformin inhibited CCA tumor growth via the regulation of Drosha-mediated expression of multiple carcinogenic miRNAs. The use of metformin seems to be safe in patients with cirrhosis, and provides a survival benefit. Once hepatic malignancies are already established, metformin does not offer any therapeutic potential. Clinical trials and epidemiological studies of the benefit of metformin use for CCA should be conducted. To date, whether metformin as a prospective chemotherapeutic for CCA is still questionable and waits further atttention.

Neuroprotective Effect of Chebulagic Acid via Autophagy Induction in SH-SY5Y Cells

  • Kim, Hee Ju;Kim, Joonki;Kang, Ki Sung;Lee, Keun Taik;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.275-281
    • /
    • 2014
  • Autophagy is a series of catabolic process mediating the bulk degradation of intracellular proteins and organelles through formation of a double-membrane vesicle, known as an autophagosome, and fusing with lysosome. Autophagy plays an important role of death-survival decisions in neuronal cells, which may influence to several neurodegenerative disorders including Parkinson's disease. Chebulagic acid, the major constituent of Terminalia chebula and Phyllanthus emblica, is a benzopyran tannin compound with various kinds of beneficial effects. This study was performed to investigate the autophagy enhancing effect of chebulagic acid on human neuroblastoma SH-SY5Y cell lines. We determined the effect of chebulagic acid on expression levels of autophagosome marker proteins such as, DOR/TP53INP2, Golgi-associated ATPase Enhancer of 16 kDa (GATE 16) and Light chain 3 II (LC3 II), as well as those of its upstream pathway proteins, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and Beclin-1. All of those proteins were modulated by chebulagic acid treatment in a way of enhancing the autophagy. Additionally in our study, chebulagic acid also showed a protective effect against 1-methyl-4-phenylpyridinium ($MPP^+$) - induced cytotoxicity which mimics the pathological symptom of Parkinson's disease. This effect seems partially mediated by enhanced autophagy which increased the degradation of aggregated or misfolded proteins from cells. This study suggests that chebulagic acid is an attractive candidate as an autophagy-enhancing agent and therefore, it may provide a promising strategy to prevent or cure the diseases caused by accumulation of abnormal proteins including Parkinson's disease.

Porphyromonas gingivalis exacerbates the progression of fatty liver disease via CD36-PPARγ pathway

  • Ahn, Ji-Su;Yang, Ji Won;Oh, Su-Jeong;Shin, Ye Young;Kang, Min-Jung;Park, Hae Ryoun;Seo, Yoojin;Kim, Hyung-Sik
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.323-328
    • /
    • 2021
  • Periodontal diseases have been reported to have a multidirectional association with metabolic disorders. We sought to investigate the correlation between periodontitis and diabetes or fatty liver disease using HFD-fed obese mice inoculated with P. gingivalis. Body weight, alveolar bone loss, serological biochemistry, and glucose level were determined to evaluate the pathophysiology of periodontitis and diabetes. For the evaluation of fatty liver disease, hepatic nonalcoholic steatohepatitis (NASH) was assessed by scoring steatosis, inflammation, hepatocyte ballooning and the crucial signaling pathways involved in liver metabolism were analyzed. The C-reactive protein (CRP) level and NASH score in P. gingivalis-infected obese mice were significantly elevated. Particularly, the extensive lobular inflammation was observed in the liver of obese mice infected with P. gingivalis. Moreover, the expression of metabolic regulatory factors, including peroxisome proliferator-activated receptor γ (Pparγ) and the fatty acid transporter Cd36, was up-regulated in the liver of P. gingivalis-infected obese mice. However, inoculation of P. gingivalis had no significant influence on glucose homeostasis, insulin resistance, and hepatic mTOR/AMPK signaling. In conclusion, our results indicate that P. gingivalis can induce the progression of fatty liver disease in HFD-fed mice through the upregulation of CD36-PPARγ axis.

The Anti-Obesity Activity of Syzygium aromaticum L. in High-Fat Diet-induced Obese Mice (고지방식이로 유도된 비만 마우스에서 정향(丁香)의 항비만 효과)

  • Hui Yeon An;Seong-Soo Roh;Mi-Rae Shin
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • Objectives : This study aims to analyze the anti-obesity effect of Syzygium aromaticum L. (SA) in obese mice made by a 60% high-fat diet (HFD). Methods : The antioxidant activities of SA were evaluated in vitro. To assess the anti-obesity effect of SA, male C57BL/6 mice were divided into five groups: Normal, Control, GC100 (Garcinia cambogia 100 mg/kg/day), SA100 (SA 100 mg/kg/day), SA200 (SA 200 mg/kg/day). All groups underwent a 6-week regimen of HFD and oral administration, except for the Normal group. Subsequently, we performed blood analysis, western blotting, and histopathological staining. Results : SA demonstrated effectiveness in antioxidant measurements. SA treatment resulted in a significant decrease in body weight gain, along with reductions in liver and epididymal fat weights. Serum triglyceride (TG), total cholesterol (TC), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and leptin levels were reduced with SA treatment. Moreover, in the SA100 group, the reduction of both TG and TC synthesis was caused by inhibiting the sterol regulatory element-binding transcription factor 1 (SREBP-1) and sterol regulatory element-binding transcription factor 2 (SREBP-2) through the Sirtuin 1 (Sirt1)/phospho-AMP-activated protein kinase (p-AMPK) pathway. Furthermore, SA treatment at a dose of 100 mg/kg reduced the accumulation of lipid droplets in the liver and the adipocyte size of the epididymal fat. Conclusion : Our research reveals the anti-obesity effects of SA by demonstrating its ability to inhibit body weight gain and lipid accumulation, suggesting that SA might be promising for obesity treatment.

Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

  • Yuwares Malila;Tanaporn Uengwetwanit;Pornnicha Sanpinit;Wipakarn Songyou;Yanee Srimarut;Sajee Kunhareang
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.61-73
    • /
    • 2024
  • Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75). Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35℃±1℃ for 6 h, followed by 26℃±1℃ for 18 h) for 20 days. Control group was raised under a constant temperature of 26℃±1℃. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermal-stressed groups were compared within the same breeds. Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress. Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Effect of submerged culture of Ceriporia lacerata mycelium on GLUT4 protein in db/db mouse (db/db 마우스에서 Ceriporia lacerata 균사체 배양액이 GLUT4 발현에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.893-900
    • /
    • 2015
  • In this study, we evaluated the antidiabetic effect of a submerged culture of Ceriporia lacerata mycelium (CL01) on hematological indices, as well as protein and mRNA expression of the insulin-signaling pathway, in db/db mice. After CL01 was administrated for 4 weeks, blood glucose levels decreased consistently, and plasma insulin and c-peptide levels each decreased by roughly 55.8%, 40% of those in the negative control (p<0.05). With regard to HOMA-IR, an insulin resistance index, insulin resistance of the CL01-fed group improved over that of the negative control group by about 62% (p<0.05). In addition, we demonstrated that the protein expression levels of pIR, pAkt, pAMPK, and GLUT4 and the mRNA expression levels of Akt2, IRS1, and GLUT4 in the muscle cells of db/db mice increased in the CL01-fed group compared to the corresponding levels in the control group. These results demonstrate that CL01 affects glucose metabolism, upregulates protein and gene expression in the insulin-signaling pathway, and decreases blood glucose levels effectively by improving insulin sensitivity. More than 90% of those who suffer from type 2 diabetes are more likely to suffer from hyperinsulinemia, hypertension, obesity, and other comorbidities because of insulin resistance. Therefore, it is possible that CL01 intake could be used as a fundamental treatment for type 2 diabetes by lowering insulin resistance, and these results may prove be useful as basic evidence for further research into the mechanisms of a cure for type 2 diabetes.

Comprehensive analysis of miRNAs, lncRNAs and mRNAs profiles in backfat tissue between Daweizi and Yorkshire pigs

  • Chen Chen;Yitong Chang;Yuan Deng;Qingming Cui;Yingying Liu;Huali Li;Huibo Ren;Ji Zhu;Qi Liu;Yinglin Peng
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.404-416
    • /
    • 2023
  • Objective: Daweizi (DWZ) is a famous indigenous pig breed in China and characterized by tender meat and high fat percentage. However, the expression profiles and functions of transcripts in DWZ pigs is still in infancy. The object of this study was to depict the transcript profiles in DWZ pigs and screen the potential pathway influence adipogenesis and fat deposition, Methods: Histological analysis of backfat tissue was firstly performed between DWZ and lean-type Yorkshire pigs, and then RNA sequencing technology was utilized to explore miRNAs, lncRNAs and mRNAs profiles in backfat tissue. 18 differentially expressed (DE) transcripts were randomly selected for quantitative real-time polymerase chain reaction (QPCR) to validate the reliability of the sequencing results. Finally, gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis were conducted to investigate the potential pathways influence adipocyte differentiation, adipogenesis and lipid metabolism, and a schematic model was further proposed. Results: A total of 1,625 differentially expressed transcripts were identified in DWZ pigs, including 27 upregulated and 45 downregulated miRNAs, 64 upregulated and 119 down-regulated lncRNA, 814 upregulated and 556 downregulated mRNAs. QPCR analysis exhibited strong consistency with the sequencing data. GO and KEGG analysis elucidated that the differentially expressed transcripts were mainly associated with cell growth and death, signal transduction, peroxisome proliferator-activated receptors (PPAR), AMP-activated protein kinase (AMPK), PI3K-Akt, adipocytokine and foxo signaling pathways, all of which are strongly involved in cell development, lipid metabolism and adipogenesis. Further analysis indicated that the BGIR9823_87926/miR-194a-5p/AQP7 network may be effective in the process of adipocyte differentiation or adipogenesis. Conclusion: Our study provides comprehensive insights into the regulatory network of backfat deposition and lipid metabolism in pigs from the point of view of miRNAs, lncRNAs and mRNAs.

Effect of hemp seed oil on lipid metabolism in rats fed a high-cholesterol diet (햄프씨드 오일이 고콜레스테롤식이를 급여한 흰쥐의 지질대사에 미치는 영향)

  • Jin A Lee ;Seong-Soo Roh ;Woo Rak Lee;Mi-Rae Shin
    • Journal of Nutrition and Health
    • /
    • v.56 no.4
    • /
    • pp.361-376
    • /
    • 2023
  • Purpose: This study evaluates the potential protective effects of hemp (Cannabis sativa L.) seed oil supplementation in rats fed a high-cholesterol diet. Methods: Rats were fed a 1.25% cholesterol diet for 8 weeks, followed by oral administration of either of the two doses of hemp seed oil (HO) (0.5 mL/kg (HOL group) or 1 mL/kg (HOH group) body weight/day) or simvastatin at 10 mg/kg body weight/day. Oxidative stress, lipids, liver enzymes, and renal markers were measured in the serum. Western blot analysis was applied for evaluating the expressions of inflammatory makers. Results: Except for HDL-cholesterol, the altered levels of lipoproteins, aminotransferases, urea, and creatine kinases in hypercholesterolemic rats were significantly corrected by HO administration. Especially, compared to the HOH group, HOL treatment further reduced AST, ALT, creatinine, TC, and LDL-cholesterol levels. Moreover, both the atherogenic index and cardiac risk factor (CRF) in the HOL group were more restrained compared to the HOH group. Increased levels of p-AMPK coincided with the inhibition of SREBP-2 activation which subsequently suppressed the expression of HMGCR. Nuclear factor (NF)-κB activation coincided with the PI3K/Akt pathway activation and the increased phosphorylation of p38; these levels were significantly suppressed by HO treatment. In addition, HO treatment markedly reversed the changes in chemokines such as ICAM-1, VCAM-1, and MCP-1. Histological alterations induced by cholesterol overload in cardiac and hepatic tissues were ameliorated by HO supplementation. Conclusion: Taken together, our results indicate a low concentration of HO demonstrates improved dysfunctions caused by a high-cholesterol diet via inhibition of the PI3K/Akt/NF-κB signaling pathway.

Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets

  • Jinbao Li;Jianmin Zhang;Xinlin Jin;Shiyin Li;Yingbin Du;Yongqing Zeng;Jin Wang;Wei Chen
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • Objective: Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. Methods: The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR) to examine the mechanism of oxidative damage. Results: A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. Conclusion: Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.