• Title/Summary/Keyword: AMP-activated protein kinase

Search Result 261, Processing Time 0.032 seconds

Glucose Transporters and AMP-Activated Protein Kinase Modulation Effects of Decursin and Decursinol Angelate on Diabetic Rats (당뇨유발 흰쥐에서 당수송 인자와 AMP-Activated Protein Kinase의 조절에 대한 데커신과 데커시놀 안젤레이트의 효과)

  • Ok, Seon;Lee, Ju-Hee;Kim, Ik-Hwan;Kang, Jae-Seon
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2011
  • Diabetes has been one of major health risks in industrialized countries. AMP-activated protein kinase (AMPK) has been focused as a novel therapeutic target for the treatment of metabolic syndromes, because AMPK increases glucose uptake through independent insulin signal pathway. In this study, we investigated the anti-diabetic effect of Angelica gigas Nakai extract (AGNEX), a mixture of decursin and decursinol angelate (53 : 47), decursin and decursinol angelate on blood glucose, glucose transport (GLUT) and AMPK expression levels in streptozotocin (STZ)-induced diabetic rats. To induce diabetes, 50 mg/kg of STZ was injected via i.v. route and AGNEX 2 mg/kg (STZ+AG), decursin 2 mg/kg (STZ+D), decursinol angelate 2 mg/kg (STZ+DA), and metformin 100 mg/kg (STZ+M) were administered orally for 21 days. STZ+DA group showed a significant decrease in fasting blood glucose levels compared to the other groups. Decursinol angelate significantly upregulated expression of glucose transporter 4 (GLUT4) and phosphorylation of AMPK (p-AMPK) in skeletal muscle of rats. In pancreas of rats, decursinol angelate significantly increased expression of GLUT2 through down-regulation of p-AMPK. In addition to the result of pancreatic islets morphology, AGNEX, decursin, decursinol angelate, and metformin treated group recovered ${\beta}$-cell damage by hyperglycemia. These results indicate that decursinol angelate might be a potential anti-diabetic agent and AGNEX could be useful in the treatment of diabetes mellitus.

cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

  • Peng, Li-qun;Li, Ping;Zhang, Qiu-li;Hong, Lan;Liu, Li-ping;Cui, Xun;Cui, Bai-ri
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the $Na^+-K^+$-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain ($3.0{\mu}mol/L$) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 ($3.0{\mu}mol/L$), an inhibitor for reverse mode of $Na^+-Ca^{2+}$ exchangers (NCX), but did not by L-type $Ca^{2+}$ channel blocker nifedipine ($1.0{\mu}mol/L$) or protein kinase A (PKA) selective inhibitor H-89 ($3.0{\mu}mol/L$). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline ($100.0{\mu}mol/L$), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP ($0.5{\mu}mol/L$) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 ($30{\mu}mol/L$), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

Epac: new emerging cAMP-binding protein

  • Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.

Anti-Melanogenic Effect of Dendropanax Morbiferus and Its Active Components via Protein Kinas e A/Cyclic Adenos ine Monophosphate-Responsive Binding Protein-and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation

  • Bohyun Yun;Ji Soo Kim;Jung Up Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.104-104
    • /
    • 2022
  • Dendropanax morbiferus H. Lev has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia? associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(?)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.

  • PDF

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

  • Kundu, Juthika;Chae, In Gyeong;Chun, Kyung-Soo
    • Journal of Cancer Prevention
    • /
    • v.21 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Background: Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratinocytes and investigated its underlying molecular mechanisms. Methods: Reverse transcriptase-PCR and Western blot analysis were performed to detect HO-1 mRNA and protein expression, respectively. Cell viability was measured by the MTS test. The induction of intracellular reactive oxygen species (ROS) by fraxetin was evaluated by 2′,7′-dichlorofluorescin diacetate staining. Results: Fraxetin upregulated mRNA and protein expression of HO-1. Incubation with fraxetin induced the localization of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus and increased the antioxidant response element-reporter gene activity. Fraxetin also induced the phosphorylation of Akt and AMP-activated protein kinase $(AMPK){\alpha}$ and diminished the expression of phosphatase and tensin homolog, a negative regulator of Akt. Pharmacological inhibition of Akt and $AMPK{\alpha}$ abrogated fraxetin-induced expression of HO-1 and nuclear localization of Nrf2. Furthermore, fraxetin generated ROS in a concentration-dependent manner. Conclusions: Fraxetin induces HO-1 expression through activation of Akt/Nrf2 or $AMPK{\alpha}/Nrf2$ pathway in HaCaT cells.

Folic acid supplementation prevents high fructose-induced non-alcoholic fatty liver disease by activating the AMPK and LKB1 signaling pathways

  • Kim, Hyewon;Min, Hyesun
    • Nutrition Research and Practice
    • /
    • v.14 no.4
    • /
    • pp.309-321
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: The present study aimed to evaluate the effects of folic acid supplementation in high-fructose-induced hepatic steatosis and clarify the underlying mechanism of folic acid supplementation. MATERIALS/METHODS: Male SD rats were fed control, 64% high-fructose diet, or 64% high-fructose diet with folic acid for eight weeks. Plasma glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, lipid profiles, hepatic lipid content, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS: The HF diet significantly increased hepatic total lipid and triglyceride (TG) and decreased hepatic SAM, SAH, and SAM:SAH ratio. In rats fed a high fructose diet, folic acid supplementation significantly reduced hepatic TG, increased hepatic SAM, and alleviated hepatic steatosis. Moreover, folic acid supplementation in rats fed high fructose enhanced the levels of phosphorylated AMP-activated protein kinase (AMPK) and liver kinase B (LKB1) and inhibited phosphorylation of acetyl coenzyme A carboxylase (ACC) in the liver. CONCLUSIONS: These results suggest that the protective effect of folic acid supplementation in rats fed high fructose may include the activation of LKB1/AMPK/ACC and increased SAM in the liver, which inhibit hepatic lipogenesis, thus ameliorating hepatic steatosis. The present study may provide evidence for the beneficial effects of folic acid supplementation in the treatment of non-alcoholic fatty liver disease.

The Role of Intracellular Signaling Pathways in the Neurobiology of the Depressive Disorder (우울장애의 신경생물학적 기전으로서 세포 내 신호전달계의 역할)

  • Kim, Se-Hyun
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • Major depressive disorder is characterized by cellular and molecular alterations resulting in the depressive behavioral phenotypes. Preclinical and clinical studies have demonstrated the deficits, including cell atrophy and loss, in limbic and cortical regions of patients with depression, which is restored with antidepressants by reestablishing proper molecular changes. These findings have implicated the involvement of relevant intracellular signaling pathways in the pathogenetic and therapeutic mechanisms of depressive disorders. This review summarizes the current knowledge of the signal transduction mechanisms related to depressive disorders, including cyclic-AMP, mitogen-activated protein kinase, Akt, and protein translation initiation signaling cascades. Understanding molecular components of signaling pathways regulating neurobiology of depressive disorders may provide the novel targets for the development of more efficacious treatment modalities.

Resveratrol Downregulates Acetyl-CoA Carboxylase $\alpha$ and Fatty Acid Synthase by AMPK-mediated Downregulation of mTOR in Breast Cancer Cells

  • Park, Sahng-Wook;Yoon, Sa-Rah;Moon, Jong-Seok;Park, Byeong-Woo;Kim, Kyung-Sup
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1047-1051
    • /
    • 2008
  • Overexpression of HER2 in breast cancer cells is considered to induce the expression of acetyl-CoA carboxylase $\alpha$ (ACACA) and fatty acid synthase (FASN) through activation of mammalian target of rapamycin (mTOR) signaling pathway. Resveratrol, a red wine polyphenol, has been shown to induce apoptosis in several cancers by interfering in several signaling pathways. Present study elucidated the mechanism by which resveratrol downregulates ACACA and FASN in breast cancer cells. Resveratrol activated AMP-activated protein kinase (AMPK) and downregulated mTOR in BT-474 cells. These effects of resveratrol were mimicked by AICAR, an AMPK activator, and exogenously expressed constitutively active AMPK, while they were abolished by a dominant-negative mutant of AMPK. The downregulation of mTOR was not accompanied with changes in Akt, the upstream regulator of mTOR. These findings indicate that the downregulation of ACACA and FASN by resveratrol is mediated by the downregulation of mTOR signaling pathway via activation of AMPK.

Reserpine treatment activates AMP activated protein kinase (AMPK)

  • Park, Rackhyun;Lee, Kang Il;Kim, Hyunju;Jang, Minsu;Ha, Thi Kim Quy;Oh, Won Keun;Park, Junsoo
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.157-161
    • /
    • 2017
  • Reserpine is a well-known medicine for the treatment of hypertension, however the role of reserpine in cell signaling is not fully understood. Here, we report that reserpine treatment induces the phosphorylation of AMP activated protein kinase (AMPK) at threonine 172 (T172) in PC12 cells. Phosphorylation of AMPK T172 is regulated by upstream signaling molecules, and the increase of phospho-T172 indicates that AMPK is activated. When we examined the FOXO3a dependent transcription by using the FHRE-Luc reporter assay, reserpine treatment repressed the FHRE-Luc reporter activity in a dose dependent manner. Finally, we showed that reserpine treatment induced the phosphorylation of AMPK as well as cell death in MCF-7 cells. These results suggest that AMPK is a potential cellular target of reserpine.

Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1

  • Kim, Jung-Eun;Sung, Jin-Young;Woo, Chang-Hoon;Kang, Young-Jin;Lee, Kwang-Youn;Kim, Hee-Sun;Kwun, Woo-Hyung;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.4
    • /
    • pp.203-210
    • /
    • 2011
  • Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.