• Title/Summary/Keyword: AMP kinase

Search Result 431, Processing Time 0.025 seconds

Anti-platelet effects of Artesunate through Regulation of Cyclic Nucleotide on Collagen-induced Human Platelets

  • Dong-Ha Lee
    • Biomedical Science Letters
    • /
    • v.29 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • Discovery of new substance that can regulate platelet aggregation or suppress aggregation will aid in the prevention and treatment of cardiovascular diseases. Artesunate is a compound from plant roots of Artemisia or Scopolia, and its effects have shown to be promising in areas of anticancer and Alzheimer's disease. However, the role and mechanisms by which artesunate affects the aggregation of platelets, and the formation of a thrombus are currently not understood. This study examined the ways artesunate affects platelets activation and thrombus formation induced by collagen. As a result, cAMP and cGMP production were increased significantly by artesunate relative to the doses, as well as phosphorylated VASP and IP3R, substrates to cAMP-dependent kinase and cGMP-dependent kinase, in a significant manner. The Ca2+ normally mobilized from the dense tubular system was inhibited due to IP3R, phosphorylation from artesunate, and phosphorylated VASP aided in inhibiting platelet activity via αIIb/β3 platelet membrane inactivation and inhibiting fibrinogen binding. Finally, artesunate inhibited thrombin-induced thrombus formation. Therefore, we suggest that artesunate has importance with cardiovascular diseases stemming from the abnormal platelets activation and thrombus formation by acting as an effective prophylactic and therapeutic agent.

Phosphorylation of Elongation Factor-2 And Activity Of Ca2+/Calmodulin-Dependent Protein Kinase III During The Cell Cycle

  • Suh, Kyong-Hoon
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • Phosphorylation of the eukaryotic elongation factor 2 (eEF-2) blocks the elongation step of translation and stops overall protein synthesis. Although the overall rate of protein synthesis in mitosis reduces to 20% of that in S phase, it is unclear how the protein translation procedure is regulated during the cell cycle, especially in the stage of peptide elongation. To delineate the regulation of the elongation step through eEF-2 function, the changes in phosphorylation of eEF-2, and in activity of corresponding $Ca^{2+}$/calmodulin (CaM)-dependent protein kinase III (CaMK-III) during the cell cycle of NIH 3T3 cells, were determined. The in vivo level of phosphorylated eEF-2 showed an 80% and 40% increase in the cells arrested at G1 and M, respectively. The activity of CaMK-III also changed in a similar pattern, more than a 2-fold increase when arrested at G1 and M. The activity change of the kinase during one turn of the cell cycle also demonstrated the activation at G1 and M phases. The activity change of cAMP-dependent protein kinase (PKA) was reciprocal to that of CaMK-III. These results indicated: (1) the activity of CaMK-III was cell cycle-dependent and (2) the level of eEF-2 phosphorylation followed the kinase activity change. Therefore, the elongation step of protein synthesis might be cell cycle dependently regulated.

  • PDF

AKAPDB: A-Kinase Anchoring Proteins Database

  • Kim, In-Sil;Lim, Kyung-Joon;Han, Bok-Ghee;Chung, Myung-Guen;Kim, Kyu-Won
    • Genomics & Informatics
    • /
    • v.8 no.2
    • /
    • pp.90-93
    • /
    • 2010
  • A-kinase-anchoring proteins (AKAPs) are scaffold proteins which compartmentalize protein kinase A (PKA, cAMP-dependent protein kinase) and other enzymes to specific subcellular sites. The spatiotemporal control of these enzymes by AKAPs is important for cellular function like cell growth and development etc. Hence, it is important to understand the basic function of AKAPs and their functional domains. However, diverse names, function, cellular localizations and many members of AKAPs increase difficulties when researchers search appropriate AKAPs for their experimental purpose. Nevertheless, there was no previous AKAPs-related database regardless of their important cellular functions and difficulty of finding appropriate AKAPs. So, we developed AKAPs database (AKAPDB), which contains their sequence information, functions and other information derived from prediction programs and other databases. Therefore, we propose that AKAPDB can be an important tool to researchers in the related fields. AKAPDB is available via the internet at http://plaza3.snu.ac.kr/akapdb/.

The Anti-adipogenic and Lipolytic Effect of Jinkyool (Citrus sunki Hort. ex Tanaka) Leaf Extract in 3T3-L1 Cells (3T3-L1 지방세포에서 진귤 잎 유래 polymethoxyflavones 다량 함유 분획물(PRF)의 항지방생성 및 지방분해 효과)

  • Jin, Yeong Jun;Jang, Mi Gyeong;Kim, Jae-Won;Kang, Minyeong;Ko, Hee Chul;Kim, Se Jae
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.542-549
    • /
    • 2022
  • Polymethoxyflavones (PMFs) are flavonoids mainly found in citrus fruits and have been reported to exhibit a wide range of bioactivities, including anti-obesity, anti-cancer, and anti-inflammatory actions. To utilize PMFs as functional materials, it is necessary to develop a simple method of obtaining PMFs from citrus tissues containing a large amount of PMFs. It has been reported that Jinkyool (C. sunki Hort ex. Tanaka) peel contained a large amount of PMFs, but there are no studies on PMFs isolated from its leaves. In this study, we established a simple procedure for obtaining the PMF-rich fraction (PRF) from the leaves of Jinkyool and investigated the effects of PRF on lipid metabolism in 3T3-L1 cells. PRF inhibited lipogenesis during the differentiation of 3T3-L1 preadipocytes. It decreased the expression of peroxisome proliferator-activated receptor gamma (PPAR𝛾) and CCAAT/enhancer binding protein alpha (CEBP𝛼), FAS, and adipocyte fatty-acid-binding protein 2 (aP2). In mature 3T3-L1 adipocytes, PRF increases the phosphorylation of protein kinase A (PKA)/hormone-sensitive lipase (HSL), which are key factors involved in lipolysis. Moreover, it increases the phosphorylation of the AMP-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) involved in fatty acid oxidation. These results suggest that PRF from Jinkyool leaves can be used as an anti-obesity agent with the action of inhibiting lipogenesis and promoting lipolysis and fatty acid oxidation in 3T3-L1 adipocytes.

Cordycepin (3'-deoxyadenosine) Has an Anti-platelet Effect by Regulating the cGMP-Associated Pathway of Human Platelet Activation

  • Cho, Hyun-Jeong;Rhee, Man-Hee;Cho, Jae-Youl;Kim, Hyeong-Soo;Ok, Woo-Jeong;Kang, Hee-Jin;Park, Hwa-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.141-147
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine), which comes from Cordyceps militaris, the Chinese medicinal fungal genus Cordyceps, is used in the treatment of various diseases such as cancer and chronic inflammation. We recently reported that cordycepin has a novel antiplatelet effect through the down regulation of $[Ca^{2+}]_{i}$ and the elevation of cGMP/cAMP production. In this study, we further investigated the effect of cordycepin on collagen-induced platelet aggregation in the presence of cGMP-dependent protein kinase (PKG)- or cAMP-dependent protein kinase (PKA)-inhibitor. PKG inhibitor Rp-8-pCPT-cGMPS potentiated the collagen-induced platelet aggregation, but PKA inhibitor Rp-8-Br-cAMPS did not. However, both Rp-8-pCPT-cGMPS and Rp-8-Br-cAMPS reduced inhibition by cordycepin of collagen-induced platelet aggregation. Moreover, cordycepin inhibited $Ca^{2+}-dependent$ phosphorylation of both 47 kDa- and 20 kDa-protein in the presence of both PKG inhibitor and PKA inhibitor. Taken altogether, these results suggest that the inhibitory effect of cordycepin on collagen-induced platelet aggregation is associated with cGMP/PKG- and cAMP/PKA-pathways, and thus cordycepin may be an efficacious intervention against platelet aggregation-mediated thrombotic disease.

Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Dae Jung;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • v.9 no.6
    • /
    • pp.606-612
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS: The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS: Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION: These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the ${\beta}$-adrenergic receptor.

Neuroprotective Effects of AMP-Activated Protein Kinase on Scopolamine Induced Memory Impairment

  • Kim, Soo-Jeong;Lee, Jun-Ho;Chung, Hwan-Suck;Song, Joo-Hyun;Ha, Joohun;Bae, Hyunsu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.331-338
    • /
    • 2013
  • AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, is activated in response to cellular stress when intracellular levels of AMP increase. We investigated the neuroprotective effects of AMPK against scopolamine-induced memory impairment in vivo and glutamate-induced cytotoxicity in vitro. An adenovirus expressing AMPK wild type alpha subunit (WT) or a dominant negative form (DN) was injected into the hippocampus of rats using a stereotaxic apparatus. The AMPK WT-injected rats showed significant reversal of the scopolamine induced cognitive deficit as evaluated by escape latency in the Morris water maze. In addition, they showed enhanced acetylcholinesterase (AChE)-reactive neurons in the hippocampus, implying increased cholinergic activity in response to AMPK. We also studied the cellular mechanism by which AMPK protects against glutamate-induced cell death in primary cultured rat hippocampal neurons. We further demonstrated that AMPK WT-infected cells increased cell viability and reduced Annexin V positive hippocampal neurons. Western blot analysis indicated that AMPK WT-infected cells reduced the expression of Bax and had no effects on Bcl-2, which resulted in a decreased Bax/Bcl-2 ratio. These data suggest that AMPK is a useful cognitive impairment treatment target, and that its beneficial effects are mediated via the protective capacity of hippocampal neurons.

Role of AMP-Activated Protein Kinase (AMPK) in Smoking-Induced Lung Inflammation and Emphysema

  • Lee, Jae Seung;Park, Sun Joo;Cho, You Sook;Huh, Jin Won;Oh, Yeon-Mok;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.1
    • /
    • pp.8-17
    • /
    • 2015
  • Background: AMP-activated protein kinase (AMPK) not only functions as an intracellular energy sensor and regulator, but is also a general sensor of oxidative stress. Furthermore, there is recent evidence that it participates in limiting acute inflammatory reactions, apoptosis and cellular senescence. Thus, it may oppose the development of chronic obstructive pulmonary disease. Methods: To investigate the role of AMPK in cigarette smoke-induced lung inflammation and emphysema we first compared cigarette smoking and polyinosinic-polycytidylic acid [poly(I:C)]-induced lung inflammation and emphysema in $AMPK{\alpha}1$-deficient ($AMPK{\alpha}1$-HT) mice and wild-type mice of the same genetic background. We then investigated the role of AMPK in the induction of interleukin-8 (IL-8) by cigarette smoke extract (CSE) in A549 cells. Results: Cigarette smoking and poly(I:C)-induced lung inflammation and emphysema were elevated in $AMPK{\alpha}1$-HT compared to wild-type mice. CSE increased AMPK activation in a CSE concentration- and time-dependent manner. 5-Aminoimidazole-4-carboxamide-1-${\beta}$-4-ribofuranoside (AICAR), an AMPK activator, decreased CSE-induced IL-8 production while Compound C, an AMPK inhibitor, increased it, as did pretreatment with an $AMPK{\alpha}1$-specific small interfering RNA. Conclusion: $AMPK{\alpha}1$-deficient mice have increased susceptibility to lung inflammation and emphysema when exposed to cigarette smoke, and AMPK appears to reduce lung inflammation and emphysema by lowering IL-8 production.

Effects of Glucagon and Insulin on Glutathione Homeostasis: Role of Cellular Signaling Pathways and Glutathione Transport System (Glucagon과 insulin이 glutathione 항상성에 미치는 영향: 세포신호전달체계 및 glutathione transport system의 역할)

  • Kim, Bong-Hee;Oh, Jung-Min;Yun, Kang-Uk;Kim, Chung-Hyeon;Kim, Sang-Kyum
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • It has been reported that hepatic glutathione (GSH) levels are decreased in diabetic patients, and glucagon increases hepatic efflux of GSH into blood. The signaling pathways responsible for mediating the glucagon effects on GSH efflux, however, are unknown. The signaling pathways involved in the regulation of GSH efflux in response to glucagon and insulin were examined in primary cultured rat hepatocytes. The GSH concentrations in the culture medium were markedly increased by the addition of glucagon, although cellular GSH levels are significantly decreased by glucagon. Insulin was also increased the GSH concentrations in the culture medium, but which is reflected in elevations of both cellular GSH and protein. Treatment of cells with 8-bromo-cAMP or dibutyryl-cAMP also resulted in elevation of the GSH concentrations in the culture medium. Pretreatment with H89, a selective inhibitor of protein kinase A, before glucagon addition markedly attenuated the glucagon effect. These results suggest that glucagon changes GSH homeostasis via elevation of GSH efflux, which may be responsible for decrease in hepatic GSH levels observed in diabetic condition. Furthermore, the present study implicates cAMP and protein kinase A in mediating the effect of glucagon on GSH efflux in primary cultured rat hepatocytes.

The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity

  • Sang-Yeon Lee;Jisun Lee;Hye-Lim Park;Yong-Wook Park;Hun Kim;Jae-Hwan Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1576-1586
    • /
    • 2023
  • Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.