• Title/Summary/Keyword: AMESim code

Search Result 22, Processing Time 0.022 seconds

Analysis of Dynamic Characteristics in Two-stage Injection for CRDi Injectors Based on AMESim Environment (AMESim기반 CRDi용 인젝터의 2단분사 동적거동 특성해석)

  • Jo, In-Su;Kwon, Ji-Won;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.57-63
    • /
    • 2012
  • For reduction of CO, NOx and soot emission emitted by diesel diffusion combustion, the authors focused on injection actuator to improve fuel availability inside combustion chamber. In this study, it was investigated the internal dynamic characteristics of two-stage injection with diesel injectors with different driving type for the common rail direct injection by using the AMESim simulation code. The analysis parameter defined such as fuel pressure, injection hole's diameter and driven voltage. As the results, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. It was found the piezo-driven injector can be utilized effectively as multiple injector than solenoid-driven injector.

Verification and Hydraulic Model Development of 3rd Generation Piezo Injector for CRDi System in Passenger Vehicle (승용CRDi용 3세대 피에조 인젝터 유압해석모델 개발 및 검증)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to its emission characteristics and fuel consumption. In this study, numerical model of 3rd generation piezo-driven injector was designed to analyze the hydraulic performance. Also the injection response characteristics was investigated by using the AMESim simulation code. From this study, it was shown that 3rd generation piezo-driven injector had a faster response and had better control capability due to its hydraulic bypass-circuit that has potential to higher hydraulic characteristics and improved accuracy of injected fuel quantity.

Analysis of Dynamic Characteristics and Performances of Vent-Relief Valve (산화제 벤트/릴리프밸브의 동특성 해석 및 작동성능분석)

  • Jang, Je-Sun;Koh, Hyeon-Seok;Han, Sang-Yeop;Lee, Kyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.741-747
    • /
    • 2010
  • Vent-relief valve performed as a safety-valve combination for liquid propellant feeding system of space launch vehicle, which can vent the vaporized oxygen vapor during both filling cryogenic oxidizer into tank and flight. We have designed vent-relief model by using the AMESim code to predict dynamic characteristics and simulate pneumatic behavior of valve. To validate valve model we have compared by opening time in vent model, and opening/closing pressure by mathematical methods and improved the accuracy through numerical flow analysis by using FLUENT code. In this study, we had verified design parameters and analyzed operating performances. We can use these analysis results to precedent development study on propellant feeding system of Korea Space Launch Vehicle.

  • PDF

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Analysis of Fast Injection Response Characteristics Between Solenoid and Piezo-Driven Injector (솔레노이드 및 피에조 인젝터의 고속분사 응답성 해석)

  • Jo, In-Su;Lee, Jung-Hyup;Lee, Jin-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.971-977
    • /
    • 2012
  • It is well known that the performance of a diesel injector is directly related to the power, emission, and fuel consumption of the diesel combustion engine. In this study, the injection response characteristics of CRDi injectors driven by a solenoid coil and a piezoceramic were investigated by using the AMESim simulation code. Some analytical parameters such as the fuel pressure and hole diameter were considered. From this study, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. In addition, it was found that the piezo-driven injector can be utilized more effectively in a multiple injection scheme than a solenoid-driven injector.

Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System (2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Lee, Jung-Hyup;Kim, Min-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

Hydraulic Modal Analysis of High-Pressure Common-rail Fuel Injection System for Passenger Vehicle (승용 CR 연료분사시스템에 대한 유압 Modal 분석)

  • Sung, Gisu;Kim, Sangmyeong;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.14-19
    • /
    • 2015
  • Recently, R&D demand for environmental friendly vehicle has rapidly increased due to its global environmental issues such as global warming, energy and economic crisis. Under this situation, the most realistic alternative way for environmental friendly vehicle is a clean diesel vehicle. The common-rail fuel injection system, as key technology of clean diesel vehicle, consists of a high pressure pump, common-rail, high pressure fuel line and electronic control injector. In common-rail high-pressure fuel injection system, high pressure wave of injection system and geometry of injector elements have a major effects on high-pressure fuel spray. Therefore, in this study, the numerical model was developed for analysis about the common-rail fuel pressure pulsation by using AMESim code. We could secure stability of common-rail high-pressure fuel injection system through optimal design of fuel line.

A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage (바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구)

  • Cho, Insu;Kim, Wootaek;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.