• Title/Summary/Keyword: ALK

Search Result 94, Processing Time 0.024 seconds

The Effect of the Unsaturated Oil on the Normal Liver and Lipid Metabolism of Rats Fed Several Plant Oils (불포화도가 다른 식물성 유지를 섭취시킨 흰쥐에서 정상적 간 및 지질대사변화의 고찰)

  • 서화중;김선희;정두례
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.426-432
    • /
    • 1991
  • To investigate the effect of the unsaturated plant oil on the normal liver and lipid metabalism rats were fed the daily dose of 1.57ml/kg body weight of perilla oil (Iodine value 190~207), corn oil (Iodine value 115~130) and olive oil (Iodine value 80~85) respectively for 28 days. The results were as follows. For the 14 days the test groups showed normal weight gain with 7.86~20.89% increase rate. In the period of the 3rd and the 4th week the increase rate of the perilla oil group was decreased significantly under 17.53~13.8% of control level, but the remainders(corn oil, olive oil) keep normal. The feeding of corn and olive oil for 28 days did show any harmful effect on normal GOT, GPT activity, ALK-P, serum cholesterol and serum triglyceride value of rat. The perilla oil feeding for 21~28 days slightly increased the GOT, GPT activity as 174.87, 93.46u but decreased the cholesterol and triglycerids value as 54.6~0.36mg/dl compared to control. In the pathological finding of test group liver some rats in 28 days feeding group showed reactive vesicula nuclei in corn oil group and mild fatty metamorphosis in olive oil group. But most subjects did not show any characterized sign of acute or subacute liver damage.

  • PDF

Lung Adenocarcinoma Gene Mutation in Koreans: Detection Using Next Generation Sequence Analysis Technique and Analysis of Concordance with Existing Genetic Test Methods (한국인의 폐선암 유전자 돌연변이: 차세대 염기서열 분석법을 이용한 검출 및 기존 유전자 검사법과의 일치도 분석)

  • Jae Ha BAEK;Kyu Bong CHO
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.1
    • /
    • pp.16-28
    • /
    • 2023
  • Lung adenocarcinoma accounts for about 40% of all lung cancers. With the recent development of gene profiling technology, studies on mutations in oncogenes and tumor suppressor genes, which are important for the development and growth of tumors, have been actively conducted. Companion diagnosis using next-generation sequencing helps improve survival with targeted therapy. In this study, formalin-fixed paraffin-embedded tissues of non-small cell lung cancer patients were subjected to hematoxylin and eosin staining for detecting genetic mutations that induce lung adenocarcinoma in Koreans. Immunohistochemical staining was also performed to accurately classify lung adenocarcinoma tissues. Based on the results, next-generation sequencing was applied to analyze the types and patterns of genetic mutations, and the association with smoking was established as the most representative cause of lung cancer. Results of next-generation sequencing analysis confirmed the single nucleotide variations, copy number variations, and gene rearrangements. In order to validate the reliability of next-generation sequencing, we additionally performed the existing genetic testing methods (polymerase chain reaction-epidermal growth factor receptor, immunohistochemistry-anaplastic lymphoma kinase (D5F3), and fluorescence in situ hybridiation-receptor tyrosine kinase 1 tests) to confirm the concordance rates with the next-generation sequencing test results. This study demonstrates that next-generation sequencing of lung adenocarcinoma patients simultaneously identifies mutation.

Relationship between 18F-FDG PET/CT Semi-Quantitative Parameters and International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society Classification in Lung Adenocarcinomas

  • Lihong Bu;NingTu;Ke Wang;Ying Zhou;Xinli Xie;Xingmin Han;Huiqin Lin;Hongyan Feng
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.112-123
    • /
    • 2022
  • Objective: To investigate the relationship between 18F-FDG PET/CT semi-quantitative parameters and the International Association for the Study of Lung Cancer, American Thoracic Society/European Respiratory Society (IASLC/ATS/ERS) histopathologic classification, including histological subtypes, proliferation activity, and somatic mutations. Materials and Methods: This retrospective study included 419 patients (150 males, 269 females; median age, 59.0 years; age range, 23.0-84.0 years) who had undergone surgical removal of stage IA-IIIA lung adenocarcinoma and had preoperative PET/CT data of lung tumors. The maximum standardized uptake values (SUVmax), background-subtracted volume (BSV), and background-subtracted lesion activity (BSL) derived from PET/CT were measured. The IASLC/ATS/ERS subtypes, Ki67 score, and epidermal growth factor/anaplastic lymphoma kinase (EGFR/ALK) mutation status were evaluated. The PET/CT semi-quantitative parameters were compared between the tumor subtypes using the Mann-Whitney U test or the Kruskal-Wallis test. The optimum cutoff values of the PET/CT semi-quantitative parameters for distinguishing the IASLC/ATS/ERS subtypes were calculated using receiver operating characteristic curve analysis. The correlation between the PET/CT semi-quantitative parameters and pathological parameters was analyzed using Spearman's correlation. Statistical significance was set at p < 0.05. Results: SUVmax, BSV, and BSL values were significantly higher in invasive adenocarcinoma (IA) than in minimally IA (MIA), and the values were higher in MIA than in adenocarcinoma in situ (AIS) (all p < 0.05). Remarkably, an SUVmax of 0.90 and a BSL of 3.62 were shown to be the optimal cutoff values for differentiating MIA from AIS, manifesting as pure ground-glass nodules with 100% sensitivity and specificity. Metabolic-volumetric parameters (BSV and BSL) were better potential independent factors than metabolic parameters (SUVmax) in differentiating growth patterns. SUVmax and BSL, rather than BSV, were strongly or moderately correlated with Ki67 in most subtypes, except for the micropapillary and solid predominant groups. PET/CT parameters were not correlated with EGFR/ALK mutation status. Conclusion: As noninvasive surrogates, preoperative PET/CT semi-quantitative parameters could imply IASLC/ATS/ERS subtypes and Ki67 index and thus may contribute to improved management of precise surgery and postoperative adjuvant therapy.

Effects of Daidzein on mRNA Expression of Bone Morphogenetic Protein Receptor Type I and II Genes in the Ovine Granulosa Cells

  • Chen, A Qin;Xu, Zi Rong;Yu, Song Dong;Yang, Zhi Gang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.326-332
    • /
    • 2010
  • Daidzein, a natural isoflavonoid phytoestrogen, structurally resembles estradiol (E2) and possesses estrogenic activity. This study was designed to test the hypothesis that daidzein may mimic the effects of E2 on ovine follicle development by regulation of the mRNA expression of bone morphogenetic protein receptor genes and thereby influence the reproductive system. Granulosa cells were cultured in serum-free McCoy's 5A medium with and without supplementation of daidzein. Results showed that daidzein (10-100 ng/ml) significantly increased the proliferation of ovine granulosa cells (p<0.05), but inhibited the growth of granulosa cells at a dose of 1,000 ng/ml (p<0.01). Daidzein inhibited progesterone production in a dose dependent manner; however, it did not affect estradiol production by granulosa cells. We also investigated the effects of daidzein on BMPRII, BMPRIB and ALK-5 mRNA expression in ovine granulosa cells by quantitative real-time PCR. Treatment of granulosa cells with daidzein increased significantly expression of these genes at 10-100 ng/ml. Thus, these data suggested that a low concentration of daidzein (10-100 ng/ml) had a direct stimulatory effect on ovine granulosa cells while a high concentration was toxic.

Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil

  • ;;Rameshwar;Tatavarty
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.152-157
    • /
    • 2003
  • Diesel-contaminated soils were ozonated for different times (0 - 900 min) and incubated for 9 wk to monitor petroleum hydrocarbons (PH)-degradative potential of indigenous microorganisms in the soils. Increased ozonation time decreased not only concentration of PH but also number of microorganisms in the soils. Microorganisms in the ozonated soils increased during 9-wk incubation as monitored by culture- and nonculture-based methods. Higher (1-2 orders of magnitude) cell number was observed by quantitative analysis of soil DNA using probes detecting genes encoding 165 rRNA(rrn), naphthalene dioxygenase (nahA), toluene dioxygenase (todC), and alkane hydroxylase (alkB) than microbial abundance estimated by culture-based methods. Such PH-degraders were relatively a few or under detection limit in 900-min ozonated soil. Further PH-removal observed during the incubation period supported the presence of PH-degraders in ozonated soils. Highest reduction (25.4%) of total PH (TPH) was observed in 180-min ozonated soil white negligible reduction was shown in 900-min ozonated soil during the period, resulting in lowest TPH-concentration in 180-min ozonated soil among the ozonated soils. Microbial community composition in 9-wk incubated soils revealed slight difference between 900-min ozonated and unozonated soils as analyzed by whole cell hybridization using group-specific rRNA-targeted oligonucleotides. Results of this study suggest that appropriate ozonation and subsequent biodegradation by indigenous microorganisms may be a cost-effective and successful remediation strategy for PH-contaminated soils.

  • PDF

EFFECT OF MOLDY AND NONMOLDY WHEAT STRAW TREATED WITH OR WITHOUT AMMONIA ON PERFORMANCE AND BLOOD SERUM CONSTITUENTS IN STEERS

  • Khan, M.F.;Smith, G.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.3
    • /
    • pp.413-419
    • /
    • 1994
  • Mold growth decreased nutritive value of wheat straw (WS). Mold increased DM (94 vs 98%) and ADF (51 vs 56%) contents and had no effect on natural detergent fiber (NDF). Crude protein and N values were decreased in moldy wheat straw, Mold increased insoluble N content of wheat straw (WS) from 21 to 27%. Ammoniation increased the CP of nonmoldy straw from 3.8 to 8.3% and moldy straw from (3.3 to 6.2%). Aspergillus and zygomycetes fungal species were most prevalent and total numbers were higher on moldy straw. Ammoniation decreased total numbers of fungal spores on nonmoldy and moldy WS. Ammoniation of moldy WS increased (p < 0.10) feed in take (1.8%) as compared with nonmoldy, ammoniated, nonmoldy and moldy WS. Steers fed moldy WS had lowest (p < 0.10) feed intake (1.3% of BW daily) compared with other diet. There was little difference (p < 0.10) in intake of nonammoniated vs. ammoniated WS. Steers fed moldy straw lost 6 kg BW. Ammoniated, nonmoldy straw elevated Blood Urea Nitrogen (BUN) (10.5 mg/dl). Alkaline Phosphatase (ALK) was greater in steers fed moldy VS nonmoldy straw (148 VS 95 U/liter. p < 0.10).

A Study on the Syntheses of 2-Aminobenzothiazoles and Their Antimicrobial Activities (2-Aminobenzothiazole 유도체의 합성 및 항균작용에 관한 연구)

  • 정상헌;정원근;정필근;이남복
    • YAKHAK HOEJI
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 1976
  • Sixteen compounds of 2-aminobenzothiazole derivatives were synthesized from alkyl ($C_{1-5}$) p-aminosalicylate by thiocyanation reaction. The NMR spectra of synthesized compounds showed that they were actually mixture of 5-hydroxy-6-alk-oxycarbonyl-2-aminobenzothiazole [alkoxy=methoxy(Ia), ethoxy (IIa), n-propoxy (IIIa), iso-propoxy (IVa), n-butoxy (Va), iso-butoxy (VIa), n-amoxy (VIIa), iso-amoxy(VIIIa)] and 7-(1b), ethoxy(IIb), n-propoxy(IIIb), iso-propoxy(IVb), n-butoxy(Vb), iso-butpxy (VIb), n-amoxy (VIIb), iso-amoxy (VIIIb)]. The mixtures of two isomeric benzothiazole were separated by two isomers varied with the kind of alkyl chain in alkyl p-aminosalicylate. These compounds were subjected to the test for antimicrobial activities using Staphylococcus aureus and Escherichia coli by tube dilutioin method. The seven compounds, Ia, IIa, IIIa, VIa, IIIb, IVb and Vb showed inhibition of the growth of S. aureus at the concentration of 10${\mu}$g/ml. As to the growth of E. coli, IVb, VIb, VIIb, and VIIIb were observed inhibition at the concentration of 1${\mu}$g/ml. Ia, IIa, IIIa, VIIa, Va, VIIIa, and IIb exhibited potential antimicrobial activities against showed inhibition of the growth of E.coli at the concentration of 100${\mu}$/ml.

  • PDF

CLINICAL STUDY OF CYSTS IN THE JAWS (악골에 발생한 낭종의 임상적 연구)

  • Kim, Kyung-Wook;Kim, Kyung-Wook;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.2
    • /
    • pp.166-173
    • /
    • 1999
  • A clinical study of selected patients with cyst which were managed in the Department of oral and maxillofacial sugery from March 1994 to February 1998 was done. An following results were obtained 1. Male were involved more than females by cyst in a ratio of 1.95:1 and most of the cases occurred in the secondary decades 2. The primary site of radicular cysts were the anterior incisor area, dentigerous cysts were anterior incisor area and canine area, incisive canal cysts were maxillary anterior area, odontogenic keratocyst were the mandibular ramus area. 3. The common symptoms were swelling(65 cases), pain(12 cases) and the mean duration of syptomatic period was 10 days. 4. The rates of histopathologic classification were radicular cyst(58%), dentigerous cyst(22%), incisive canal cyst(9%), odontogenic keratocyst(11%). 5. Average of Alk. phosphatase was 235(IU/L) at pre-twenty age and 102(IU/L) at post-twenty age. 6. In treatment modalities, enucleation was most common, odontogenic keratocyst was treated by enucleation and curettage for prevention of recurrence.

  • PDF

Antimicrobial Activity of Chemical Substances Derived from S-Alk(en)yl-L-Cysteine Sulfoxide (Alliin) in Garlic, Allium sativum L.

  • Choi, Mi-Kyung;Chae, Kyung-Yeon;Lee, Joo-Young;Kyung, Kyu-Hang
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Garlic (Allium sativum L.) contains a specific sulfur compound, the S-allyl derivative of L-cysteine sulfoxide, and has long been known for its antimicrobial activity against various microorganisms, including bacteria, fungi, and protozoa. The principal antimicrobial compound of garlic is S-allyl-L-propenethiosulfinate (allicin) which is generated by an enzyme, alliinase (L-cysteine sulfoxide lyase), from S-allyl-L-cysteine sulfoxide (alliin). This compound exists exclusively in Allium as a major non-protein sulfur-containing amino acid. S-Allyl-L-propenethiosulfinate belongs to the chemical group of thiosulfinates and is a highly potent antimicrobial. The potency of garlic extract is reduced during storage since thiosulfinates are unstable and are degraded to other compounds some of which do not have antimicrobial activity. Diallyl polysulfides and ajoene are sulfur compounds derived from allicin that do possess antimicrobial activity. It was recently found that garlic becomes antimicrobial on heating at cooking temperatures, and that the compound responsible for this is allyl alcohol, which is generated from alliin by thermal degradation.

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.