• Title/Summary/Keyword: AKR1C3

Search Result 4, Processing Time 0.017 seconds

Up-regulation of Aldo-keto Reductase 1C3 Expression in Sulforaphane-treated MCF-7 Breast Cancer Cells

  • Lee, Sang-Han
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1079-1085
    • /
    • 2008
  • The chemopreventive activity of sulforaphane (SFN) occurs through its inhibition of carcinogen-activating enzymes and its induction of detoxification enzymes. However, the exact mechanisms by which SFN exerts its anti-carcinogenic effects are not fully understood. Therefore, the mechanisms underlying the cytoprotective effects of SFN were examined in MCF-7 breast cancer cells. Exposure of cells to SFN (10 ${\mu}M$) induced a transcriptional change in the AKR1C3 gene, which is one of aldo-keto reductases (AKRs) family that is associated with detoxification and antioxidant response. Further analysis revealed that SFN elicited a dose- and time-dependent increase in the expression of both the NRF2 and AKR1C3 proteins. Moreover, this up-regulation of AKR1C3 was inhibited by pretreatment with antioxidant, N-acetyl-L-cysteine (NAC), which suggests that the up-regulation of AKR1C3 expression induced by SFN involves reactive oxygen species (ROS) signaling. Furthermore, pretreatment of cells with LY294002, a pharmacologic inhibitor of phosphatidylinositol 3-kinase (PI3K), suppressed the SFN-augmented Nrf2 activation and AKR1C3 expression; however, inhibition of PKC or MEK1/2 signaling with $G\ddot{o}6976$ or PD98059, respectively, did not alter SFN-induced AKR1C3 expression. Collectively, these data suggest that SFN can modulate the expression of the AKR1C3 in MCF-7 cells by activation of PI3K via the generation of ROS.

Finding Genes Discriminating Smokers from Non-smokers by Applying a Growing Self-organizing Clustering Method to Large Airway Epithelium Cell Microarray Data

  • Shahdoust, Maryam;Hajizadeh, Ebrahim;Mozdarani, Hossein;Chehrei, Ali
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.111-116
    • /
    • 2013
  • Background: Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells.Materials and Methods: Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously. Results: The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10. Conclusions: This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.

Analysis of Gene Expression in 4,4'-Methylenedianiline-induced Acute Hepatotoxicity

  • Oh, Jung-Hwa;Yoon, Hea-Jin;Lim, Jung-Sun;Park, Han-Jin;Cho, Jae-Woo;Kwon, Myung-Sang;Yoon, Seok-Joo
    • Toxicological Research
    • /
    • v.25 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • 4,4'-Methylenedianiline (MDA) is an aromatic amine that is widely used in the industrial synthetic process. Genotoxic MDA forms DNA adducts in the liver and is known to induce liver damage in human and rats. To elucidate the molecular mechanisms associated with MDA-induced hepatotoxicity, we have identified genes differentially expressed by microarray approach. BALB/c male mice were treated once daily with MDA (20 mg/kg) up to 7 days via intraperitoneal injection (i.p.) and hepatic damages were revealed by histopathological observation and elevation of serum marker enzymes such as AST, ALT, ALP, cholesterol, DBIL, and TBIL. Microarray analysis showed that 952 genes were differentially expressed in the liver of MDA-treated mice and their biological functions and canonical pathways were further analyzed using Ingenuity Pathways Analysis (IPA). Toxicological functional analysis showed that genes related to hepatotoxicity such hyperplasia/hyperproliferation (Timp1), necrosis/cell death (Cd14, Mt1f, Timp1, and Pmaip1), hemorrhaging (Mt1f), cholestasis (Akr1c3, Hpx, and Slc10a2), and inflammation (Cd14 and Hpx) were differentially expressed in MDA-treated group. This gene expression profiling should be useful for elucidating the genetic events associated with aromatic amine-induced hepatotoxicity and for discovering the potential biomarkers for hepatotoxicity.

GENE EXPRESSION PATTERNS INDUCED BY $TAXOL^{(R)}$ AND CYCLOSPORIN A IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE USING CDNA MICROARRAY (cDNA Microarray를 이용한 구강편평세포암종 세포주에서 $Taxol^{(R)}$과 Cyclosporin A로 유도된 유전자 발현양상)

  • Kim, Yong-Kwan;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.202-212
    • /
    • 2006
  • It is well-known that paclitaxel($Taxol^{(R)}$), which is extracted from the pacific and English yew, has been used as a chemotherapeutic agent for ovarian carcinoma and advanced breast carcinoma and Cyclosporin A, which is highly lipophilic cyclic peptide and isolated from a fungus, has been also used as an useful immunosuppressive drug after transplantation and is associated with cellular apoptosis. Since 1953, in which James Watson, Rosalind Franklin and Francis Crick discovered the double helical structure of DNA, a few kinds of techniques for identifying gene expression have been developed. In postgenomic period, many of researchers have used the DNA microarray which is high throughput screening technique to screen large numbers of gene expression simultaneously. In this study, we searched and screened the gene expression in the oral squamous cell carcinoma cell lines treated with $Taxol^{(R)}$, cyclosporin or cyclosporin combined with $Taxol^{(R)}$ using cDNA microarray. The results were as following; 1. It was useful that the appropriate concentration of Cyclosporin A and $Taxol^{(R)}$ used in oral squamous cell carcinoma cell line was under 1${\mu}g/ml$ and 3${\mu}g/ml$. 2. In the experimental group in which $Taxol^{(R)}$ and $Taxol^{(R)}$ + Cyclosporin A were used, the cell growth was extremely decreased. 3. In the group in which Cyclosporin A was used, the MTT assay was rarely decreased which means the activity of succinyl dehydrogenase is remained in mitochondria but in the group in which the mixture of Cyclosporin A and $Taxol^{(R)}$ were used, the MTT assay was extremely decreased. 4. In the each group in which Cyclosporin A(3 ${\mu}g/ml$) and $Taxol^{(R)}$(1 ${\mu}g/ml$) were used, the cell arrest was appeared in $G_2/M$ phase and in the group in which $Taxol^{(R)}$(3 ${\mu}g/ml$) was used, the cell arrest was appeared in both S phase and $G_2/M$ phase. 5. In the oral squamous cell carcinoma cell line treated with $Taxol^{(R)}$, several genes including ANGPTL4, RALBP1 and TXNRD1, associated with apoptosis, SUI1, MAC30, RRAGA and CTGF, related with cell growth, HUS1 and DUSP5, related with cell cycle and proliferation, ATF4 and CEBPG, associated with transcription factor, BTG1 and VEGF, associated with angiogenesis, FDPS, FCER1G, GPA33 and EPHA4 associated with signal transduction and receptor activity and AKR1C2 and UGTA10 related with carcinogenesis were detected in increased levels. The genes that showed increaced expression in the oral squamous cell carcinoma cell line treated with Cyclosporin A were CYR61, SERPINB2, SSR3 and UPA3A which are known as genes associated with cell growth, carcinogenesis, receptor activity and transcription factor. The genes expressed in the HN22 cell line treated with cyclosporin combined with $taxol^{(R)}$ were ALCAM and GTSE1 associated with cancer invasiveness and cell cycle regulation.