• 제목/요약/키워드: AIT(Autoignition temperature)

검색결과 73건 처리시간 0.021초

스티렌의 연소특성치 측정 및 예측 (Measurement and Prediction of Combustion Properties of Styrene)

  • 하동명;나병균
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.70-76
    • /
    • 2013
  • 스티렌의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 스티렌의 폭발하한계는 0.9 Vol.%, 상한계는 8.0 Vol.%를 추천하고, 밀페식 장치에 의한 스티렌의 하부인화점은 $29^{\circ}C{\sim}31^{\circ}C$로 측정되었으며, 개방식에서는 $32^{\circ}C{\sim}36^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 스티렌의 최소자연발화온도는 $460^{\circ}C$로 측정되었다.

2차전지 용액인 DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate)계의 연소특성치 측정 및 예측 (Measurement and Prediction of Combustion Characteristics of DEC(Diethyl Carbonate) + DMMP(Dimethyl Methylphosphonate) for Secondary Battery Solutions)

  • 장유선;장유리;최재준;전덕재;김용구;하동명
    • 한국안전학회지
    • /
    • 제38권5호
    • /
    • pp.8-14
    • /
    • 2023
  • Lithium ions can induce the thermal runaway phenomenon and lead to reignition due to electrical, mechanical, and environmental factors such as high temperature, smoke generation, explosions, or flames, which is extremely likely to create safety concerns. Therefore, one of the ways to improve the flame retardancy of the electrolyte is to use a flame-retardant additive. Comparing the associated characteristic value of existing substances with the required experimental value, it was found that these values were either considerably different or were not documented. It is vital to know a substance's combustion characteristic values, flash point, explosion limit, and autoignition temperature (AIT) as well as its combustion characteristics before using it. In this research, the flash point and AIT of materials were measured by mixing a highly volatile and flammable substance, diethyl carbonate (DEC), with flame-retardant dimethyl methylphosphonate (DMMP). The flash point of DEC, which is a pure substance, was 29℃, and that for DMMP was 65℃. Further, the lower explosion limit calculated using the measured flash point of DEC was 1.79 Vol.%, while that for DMMP was 0.79 Vol.%. The AIT was 410℃ and 390℃ for DEC and DMMP, respectively. In particular, since the AIT of DMMP has not been discussed in any previous study, it is necessary to ensure safety through experimental values. In this study, the experimental and regression analysis revealed that the average absolute deviation (ADD) for the flash point of the DEC+DMMP DEC+DMMP system is 0.58 sec and that the flash point tends to increase according to changes in the composition employed. It also revealed that the AAD for the AIT of the mixture was 3.17 sec and that the AIT tended to decrease and then increase based on changes in the composition.

가솔린탱크의 위험성평가를 위한 노말헵탄의 연소특성치 측정 및 고찰 (Measurement and Investigation of Combustible Properties of n-Heptane for Risk Assessment of Gasoline Tank)

  • 하동명;정기신;이성진;조용선;윤명오
    • 한국화재소방학회논문지
    • /
    • 제24권6호
    • /
    • pp.76-81
    • /
    • 2010
  • 노말헵탄의 안전한 취급을 위해서 $25^{\circ}C$에서 폭발한계와 폭발한계 온도의존성 그리고 하부인화점을 고찰하였다. 또한 발화지연시간에 의한 발화온도를 측정하였다. 공정의 안전을 위해서 노말헵탄의 폭발하한계는 1.0Vol%, 상한계는 7.0Vol%를 추천하였고, 하부인화점은 $-4^{\circ}C$를 추천하였다. ASTM E659-78 장치를 사용하여 발화온도와 발화지연시간을 측정하였고, 여기서 측정된 최소자연발화온도는 $225^{\circ}C$였다. 그리고 노말헵탄의 새로운 폭발한계 온도의존식을 제시하였으며, 제시된 식은 문헌값과 일치하였다.

배터리 전해질 유기용매인 EC(Ethylene Carbonate)의 연소특성치 측정 (Measurement of Combustible Characteristics of EC(Ethylene Carbonate) for Battery Electrolyte Organic Solvent)

  • 장유리;장유선;최재준;하동명
    • 한국가스학회지
    • /
    • 제27권4호
    • /
    • pp.50-55
    • /
    • 2023
  • 리튬이온 2차전지는 현재 많은 수요와 공급이 이루어지고 있다. 본 연구에서는 리튬이온전지의 전해질 유기용매로 사용되는 EC(Ethylene Carbonate)의 연소특성치 연구를 통해 이를 취급하는 공정의 안전성 확보를 목적으로 한다. 밀폐식 장치인 Setaflash와 Pensky-Martens에 의한 EC의 인화점은 141 ℃와 143 ℃, 개방식 장치인 Tag와 Cleveland는 각각 152 ℃와 156 ℃로 측정되었으며 AIT(Auto Ignition Temperature)는 420 ℃로 측정되었다. Setaflash에서 측정된 인화점에 의한 LEL(Lower Explosive Limit) 은 3.6 Vol.%로 계산되었다.

tert-Amylalcohol(TAA)의 물질안전보건자료(MSDS) 연소특성치의 신뢰도 (Reliability of Combustion Properties of MSDS(Material Safety Data Sheet) of tert-Amylalcohol(TAA))

  • 하동명
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.17-24
    • /
    • 2019
  • 산업현장에서 사용되고 있는 인화성물질의 연소특성치로는 하부/상부인화점. 폭발하한계/상한계, 최소자연발화온도(AIT), 연소점, 최소산소농도(MOC) 등이 있다. 공정 및 근로자 안전을 위해서는 이들 특성치의 정확한 평가가 이루어져야 한다. 본 연구에서는 에폭시수지와 폴리우레탄의 용매, 올레핀의 산화제, 연료용 기름과 바이오물질의 주원료 등으로 다양하게 사용되고 있는 tert-Amylalcohol(TAA)를 선정하였다. 그 이유는 다른 가연성물질에 비해 연소특성치의 신뢰성에 비교 고찰하였다. TAA의 인화점은 밀폐식 Setaflash, Pensky-Martens와 개방식 Tag, Cleveland 장치로 측정하였고, AIT는 ASTM 659E를 사용하였다. 그리고 TAA의 폭발하한계/상한계는 측정된 하부/상부인화점을 이용하여 예측하였다. Setaflash, Pensky-Martens에 의한 인화점은 19 ℃와 21 ℃, Tag와 Cleveland는 각각 28 ℃와 34 ℃, AIT는 437 ℃로 측정되었다. Setaflash에서 측정된 인화점에 의한 폭발하한계/상한계는 1.1 vol%와 11.95 vol%로 계산되었다.

이소프로필 알코올의 화재 및 폭발 특성치의 측정 및 고찰 (The Measurement and Investigation of Fire and Explosion Characteristics of Isopropyl Alcohol)

  • 하동명
    • 한국가스학회지
    • /
    • 제16권3호
    • /
    • pp.8-15
    • /
    • 2012
  • 이소프로필 알코올의 안전한 취급을 위해 $25^{\circ}C$에서 폭발한계를 고찰하였고, 실험장치를 이용하여 하부인화점, 상부인화점, 연소점 그리고 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 공정의 안전을 위한 이소프로필 알코올의 폭발 하한계는 2.0 vol%이고, 상한계는 12.0 vol%로 문헌을 통해 판단되었다. 하부인화점은 밀폐계에서 $12{\sim}14^{\circ}C$와 개방식에서 $18{\sim}19^{\circ}C$이었고, 상부인화점은 $38^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 측정된 최소자연발화온도는 $463^{\circ}C$이었다.

노말언데칸의 연소특성치의 측정 (The Measurement of Combustible Characteristics of n-Undecane)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.11-17
    • /
    • 2013
  • 노말언데칸의 안전한 취급을 위해서 하부인화점, 상부인화점, 연소점 그리고 발화지연시간에 의한 발화온도를 측정하였다. 또한 노말언데칸의 하부와 상부인화점의 측정값을 이용하여 폭발하한계와 상한계를 예측하였다. 밀폐식 장치에 의한 노말언데칸의 하부인화점은 $59^{\circ}C$$67^{\circ}C$로 측정되었고, 개방식 장치에 의한 하부인화점은 $67^{\circ}C$$72^{\circ}C$로 측정되었다. 클리브랜브 장치에 의한 노말언데칸의 연소점은 $74^{\circ}C$로 측정되었다. ASTM E659-78 장치를 사용하여 자연발화 온도와 발화지연시간을 측정하였고, 여기서 측정된 최소자연발화온도는 $198^{\circ}C$였다. 측정된 하부인화점 $59^{\circ}C$와 상부인화점 $83^{\circ}C$를 이용하여 예측된 폭발하한계는 0.65 Vol.%, 폭발상한계는 2.12 Vol.%였다.

이소부틸알코올(IBA)의 연소특성치 측정에 의한 MSDS의 적정성 연구 (The Study on the Compatibility of MSDS by Means of Measurement of Combustible Properties for Isobutylalcohol(IBA))

  • 하동명
    • 한국가스학회지
    • /
    • 제18권3호
    • /
    • pp.75-81
    • /
    • 2014
  • 이소부틸알코올의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 장치를 이용하여 측정하였다. 공정에서는 이소부틸알코올의 폭발하한계는 1.7 Vol.% 그리고 상한계는 10.9 Vol.%가 사용되고 있다. 인화점의 경우 밀폐식 장치인 Setaflash와 Penski-Martens에 의한 하부인화점은 각 각 $25^{\circ}C$$30^{\circ}C$로 측정되었으며, 개방식인 Tag와 Cleveland 에서는 각 각 $36^{\circ}C$$39^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 이소부틸알코올의 최소자연발화온도는 $400^{\circ}C$로 측정되었다.

아크릴릭산의 연소특성치의 신뢰성 연구 (A Study on the Reliability of the Combustible Properties for Acrylic Acid)

  • 하동명
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.20-26
    • /
    • 2015
  • 아크릴릭산 연소특성치의 신뢰도를 살펴보기 위해, 폭발한계에 대해서는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, Setaflash와 Pensky-Martens 밀폐식 장치에 의한 아크릴릭산의 하부인화점은 $48^{\circ}C$$51^{\circ}C$로 측정되었으며, Tag와 Cleveland 개방식에서는 $56^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 아크릴릭산의 최소자연발화온도는 $417^{\circ}C$로 측정되었다. 측정된 하부인화점과 상부인화점에 의한 폭발하한계는 2.2 Vol%, 상한계는 7.9 Vol%로 계산되었다.

에틸벤젠의 연소특성치 측정 및 예측 (The Measurement and Prediction of Combustible Properties for Ethylbenzene)

  • 하동명
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.169-175
    • /
    • 2014
  • 에틸벤젠의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였으며, 인화점과 발화지연시간에 의한 자연발화온도는 시험장치를 이용하여 측정하였다. 인화점의 경우 밀폐식 장치인 Setaflash와 Penski-Martens에 의한 하부인화점은 각 각 $20^{\circ}C$$22^{\circ}C$로 측정되었으며, 개방식인 Tag와 Cleveland에서는 각 각 $25^{\circ}C$$28^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 최소자연발화온도는 $430^{\circ}C$로 측정되었다. 에틸벤젠의 측정된 인화점을 이용하여 폭발하한계와 상한계는 0.93 Vol.%와 7.96 Vol.%로 계산되었다.