• Title/Summary/Keyword: AISI 316L

Search Result 48, Processing Time 0.026 seconds

The Sensitization and Intergranular Corrosion Behavior of AISI 316L Clad Steel with Butt Welding (AISI 316L 클래드강의 맞대기 용접부 입계부식과 예민화 거동에 관한 연구)

  • Lee, Chul-Ku;Park, Jae-Won
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • We have investigated traits of clad metals in hot-rolled clad steel plates, sensitization and mechanical properties of STS 316 steel plate and carbon steel(A516). Clad steel plates were butt-weld by SAW+SMAW, and with the time of heat treatment as the variable, heat treatment was conducted at $625^{\circ}C$, for 80, 160, 320, 640, 1280 minutes. As a way to evaluate it, sectioned weldments and external surfaces were investigated to reveal the degree of sensitization by mechanical property, etching and those of EPR test, results were compared with it. In short, the purpose of this study is suggesting some considerations in developing on-site techniques to evaluate the sensitization of stainless steels.

NiAl/Y Coating Process for Corrosion Resistance of Wet-seal area in MCFC (MCFC용 wet-seal부의 내식성 향상을 위한 NiAl/Y 피복 공정에 관한 연구)

  • Choe, Jae-Ung;Gang, Seong-Gun;Song, Sang-Bin;Hwang, Eung-Rim
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.666-670
    • /
    • 2001
  • To improve the corrosion resistance of separator wet-seal area which is the barrier of commercialization of molten carbonate fuel cell(MCFC), Ni/Y/Al coating layer was fabricated by Ni electroplating and Y, Al e-beam PVD on AISI 316L stainless steel. NiAlY alloy coating layer was formed by heat treatment in reduction atmosphere at $800^{\circ}C$ for 5hr. Immersion test in molten carbonate salt at $650^{\circ}C$ was performed on as- received AISI 316L stainless steel and NiAlY coated specimen. According to cross sectional SEM/EDS observations, corrosion resistance of separator wet-seal area was improved by formation of dense oxide layers of Al and Y.

  • PDF

Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L austenitic stainless steel weld metals ($Cr_{eq}/Ni_{eq}$ 당량비에 따른 AISI 316L 스테인리스강의 연성저하균열 특성에 대한 연구)

  • Jang, A.Y.;Lee, D.J.;Kim, Y.H.;Choi, C.H.;Lee, S.H.;Byun, J.C.;Jung, G.H.;Lee, H.W.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.56-56
    • /
    • 2009
  • AISI 316L 스테인리스강에 새롭게 디자인한 서로 다른 3가지 응고모드를 가진 와이어로 FCAW(Flux Cored Arc Welding)을 하였다. 각각의 3가지 와이어는 Pseudobinary phase diagram에 따라 AF, FA, F모드를 가졌다. 미세조직은 $Cr_{eq}/Ni_{eq}$이 증가할수록 델타 페라이트 함량이 증가하였으며, 초정 상의 경우 초정 오스테나이트에서 초정 페라이트로 변태하였고, 연성저하균열의 민감도가 감소하였다. 연성저하균열은 이동결정립계의 형상에 따라 좌우되며, 미량의 페라이트를 함유한 오스테나이트에서는 페라이트가 핀(Pin) 역할을 제대로 하지 못하여 직선형태의 이동 결정립계 따라 입계 미끄러짐의 메커니즘을 통해 전파되었으며, 곡선형태의 이동 결정립계에서는 델타 페라이트가 핀 역할을 하여 역할을 하여 구속 상태에서 응력집중을 막고 응력을 분산시켜 균열이 전파되는 것을 방해하여 균열이 발생되지 않았다.

  • PDF

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding (가스 질화를 통한 316L스테인리스강의 내식성 개선)

  • Hyunbin Jo;Serim Park;Jisu Kim;Junghoon Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.

Effects of Processing Time and Temperature on the Surface Properties of AISI 316L Stainless steel During Low Temperature Plasma Nitriding After Low Temperature Plasma Carburizing (AISI 316L stainless steel에 저온 플라즈마 침탄처리 후 질화처리 시 처리시간과 온도가 표면특성에 미치는 영향)

  • Lee, Insup
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.357-362
    • /
    • 2008
  • The 2-step low temperature plasma processes (the combined carburizing and post-nitriding) were carried out for improving both the surface hardness and corrosion resistance of AISI 316L stainless steel. The effects of processing time and temperature on the surface properties during nitriding step were investigated. The expanded austenite (${\gamma}_N$) was formed on all of the treated surface. The thickness of ${\gamma}_N$ was increased up to about $20{\mu}m$ and the thickness of entire hardened layer was determined to be about $40{\mu}m$. The surface hardness reached up to $1,200HV_{0.1}$ which is about 5 times higher than that of untreated sample ($250HV_{0.1}$). The thickness of ${\gamma}_N$ and concentration of N on the surface were increased with increasing processing time and temperature. The corrosion resistance in 2-step low temperature plasma processed austenitic stainless steels was enhanced more than that in the untreated austenitic stainless steels due to a high concentration of N on the surface.

AISI316L stainless steel에 저온 프라즈마 침탄처리 후 질화처리 시 공정인자에 따른 표면특성평가

  • Jeong, Gwang-Ho;Lee, In-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.155-156
    • /
    • 2007
  • AISI316L강에 저온 프라즈마 침탄과 저온 프라즈마 질화를 연속적으로 실시하여 표면경도와 내식성을 동시에 증가시키는 처리법에서 질화처리 시 처리시간 및 온도에 따른 표면특성변화를 조사하였다. 모든 시편의 표면에 N에 의해 확장된 오스테나이트(${\gamma}_N$)가 형성되었으며, 형성된 ${\gamma}_N$로 인하여 표면경도가 약 $3{\sim}4$배 증가하였다. 처리시간과 온도가 증가함에 따라 ${\gamma}_N$층의 두께와 표면의 N농도가 증가 하였다. 표면처리한 모든 시편은 표면의 N의 영향으로 내식성이 증가 하였다.

  • PDF

Heat input effects on microstructure quenched and tempered steel ASTM A517 to stainless steel AISI 316L

  • Pezeshkian, Rouhollah Mohsen;Shafaiepour, Saiedeh
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In this study, the effect of heat input on weld metal microstructure and the effects of dissimilar weld heat affected zone in quenched and tempered ASTM A517 on the stainless steel AISI 316L is investigated through the optimization of welding parameters. For this purpose, two welding techniques are used, tungsten-conventional gas and pulsed gas with weld wire ER 309MoL with Diameter 2.4 mm. Research showed that the grain size of the heat affected zone in pulsed welding is less compared with conventional welding; weld metal structure is fully austenitic, it has a finer structure in the pulsed method. Additionally, the growth of weld metal adjacent steel A517 is different from steel 316L. Further, investigation showed that the rate of dilution is less in the pulsed method and the impact energy is increased in each three regions of the weld metal and heat affected zones in the pulsed method; the fracture in the weld metal and heat affected zone of steel 316L is quite soft and it is semi-crispy in the heat affected zone of steel A517.

The Contact Resistance and Corrosion Properties of Carburized 316L Stainless Steel (침탄된 316L 스테인리스 강의 접촉저항 및 내식 특성)

  • Hong, Wonhyuk;Ko, Seokjin;Jang, Dong-Su;Lee, Jung Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.192-196
    • /
    • 2013
  • Stainless steels (AISI 316L) are carburized by Inductively coupled plasma using $CH_4$ and Ar gas. The ${\gamma}_c$ phase(S-phase) is formed on the surface of stainless steel after carburizing process. The XRD peak of carburized samples is shifted to lower diffracting angle due to lattice expansion. Overall, the thickness of ${\gamma}_c$ phase showed a linear dependence with respect to increasing temperature due to the faster rate of diffusion of carbon. However, at temperatures above 500, the thickness data deviated from the linear trend. It is expected that the deviation was caused from atomic diffusion as well as other reactions that occurred at high temperatures. The interfacial contact resistance (ICR) and corrosion resistance are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment. The ICR value of the carburized samples decreased from 130 $m{\Omega}cm^2$ (AISI 316L) to about 20 $m{\Omega}cm^2$. The sample carburized at 200 showed the best corrosion current density (6 ${\mu}Acm^{-2}$).