• 제목/요약/키워드: AISI

검색결과 404건 처리시간 0.018초

Fe-16Cr-6Ni-6Mn-1.7Mo 스테인리스 합금의 700~900℃에서의 대기중 산화 (Atmospheric Oxidation of Fe-16Cr-6Ni-6Mn-1.7Mo Stainless Steel between 700 and 900℃)

  • 이동복
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.153-160
    • /
    • 2011
  • The AISI 216L stainless steel with a composition of Fe-16Cr-6Ni-6Mn-1.7Mo (wt.%) was oxidized at $700{\sim}900^{\circ}C$ in air for 100 h. At $700^{\circ}C$, a thin $Mn_{1.5}Cr_{1.5}O_4$ oxide layer with a thickness of $0.4{\mu}m$ formed. At $800^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $FeCr_2O_4$ oxide layer with a total thickness of $30{\mu}m$ formed. The non-adherent scale formed at $800^{\circ}C$ was susceptible to cracking. At $900^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $Mn_{1.5}Cr_{1.5}O_4$ oxide layer formed, whose total thickness was $10{\sim}15{\mu}m$. The scales formed at $900^{\circ}C$ were non-adherent and susceptible to cracking. 216 L stainless steel oxidized faster than 316 L stainless steel, owing to the increment of the Mn content and the decrement of Ni content.

기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석 (Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts)

  • 김단아;이광규;안동규
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

Tribological and Corrosion Behavior of Multilayered $WC-Ti_{1-x}Al_xN$ Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • S.H. Ahn;J.H. Yoo;Park, Y.S.;Kim, J.G.;Lee, H.Y.;J.G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.31-32
    • /
    • 2001
  • Recently, many of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological and corrosion properties of tools and components. By using cathodic arc deposition, $WC-Ti_{1-x}Al_xN$ multilayers were deposited on steel substrates. Wear tests of four multiplayer coatings were performed using a ball-on-disc configuration with a linear sliding speed of 0.1m/s, 5N load. The tests were carried out at room temperature in airby employing AISI 52100 steel ball ($H_v=848N$) of 11mm in diameter. Electrochemical tests were performed using the potentiodynamic and electrochemical impedance spectroscopy (EIS) measurements. The surface morphology and topography of the wear scars of tribo-element and the corroded specimen have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with EDS. Results have showed an improved wear resistance and corrosion resistance of the $WC-Ti_{1-x}Al_xN$ coatings.

  • PDF

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

냉간 업셋팅 공정에 의한 경사형 볼 그루브를 갖는 내륜의 잔류응력 예측 및 경도 평가 (Residual Stress Prediction and Hardness Evaluation within Cross Ball Grooved Inner Race by Cold Upsetting Process)

  • 구태완
    • 소성∙가공
    • /
    • 제32권4호
    • /
    • pp.180-190
    • /
    • 2023
  • This study deals with residual stress prediction and hardness evaluation within cross ball grooved inner race fabricated by cold upsetting process consisted of upsetting and ejection steps. A raw workpiece material of AISI 5120H (SCr420H) is first spheroidized and annealed, then phosphophyllite coated to form solid lubricant layer on its outer surface. To investigate influences of the heat treatment, uni-axial compression tests and Vickers micro-hardness measurements are conducted. Three-dimensional elasto-plastic FE simulations on the upsetting step and the ejection one are performed to visualize the residual stress and the ductile (plastic deformation) damage. External feature of the fabricated inner race is fully captured by using an optical 3D scanner, and the micro-hardness is measured on internal cross-sections. Consequently, the dimensional compatibility between the simulated inner race and the fabricated one is ensured with a difference of under 0.243mm that satisfied permissible error range of ±0.50mm on the grooved surface, and the predicted residual stress is verified to have similar distribution tendency with the measured Vickers micro-hardness.

An experimental and numerical study on the local buckling of cold-formed steel castellated I-Beam stiffened with oval castellation

  • S. Prabhakaran;R. Malathy;M. Kasiviswanathan
    • Structural Engineering and Mechanics
    • /
    • 제90권2호
    • /
    • pp.143-157
    • /
    • 2024
  • Cold-formed steel (CFS) I sections are increasingly being used as load-bearing components in building constructions, and such I sections frequently incorporate web holes to facilitate service installation. The economical and structural advantages of these elements have prompted many researchers to investigate the behavior of such structures. Despite numerous studies on the buckling stability of castellated beams, there is a notable absence of experimental investigation into oval castellated beams with stiffeners. This study examines the local buckling of cold-formed steel castellated I-beams stiffened with oval constellations through experimental and numerical analysis. Four specimens are fabricated with and without stiffeners, including parallel, perpendicular, and intersecting types attached to the web portion of the beam, along with cross stiffeners for the oval-shaped openings at the beam ends. Additionally, a numerical model is developed to predict the behavior of castellated beams with oval openings up to failure, considering both material and geometric nonlinearities. Codal analysis is performed using the North American specification for cold-formed steel AISI S-100 and the Australian/New Zealand design code AS/NZS 4600. The anticipated outcomes from numerical analysis, experimental research, and codal analysis are compared and presented. It will be more helpful to the preliminary designers.

H13 강의 템퍼링 조건에 따른 템퍼링 거동 및 기계적 물성 효과 (Effect of tempering conditions on the tempering behavior and mechanical properties of tempered H13 steel)

  • 권기훈;최병호;손윤호;이영국;문경일
    • 한국표면공학회지
    • /
    • 제57권2호
    • /
    • pp.105-114
    • /
    • 2024
  • Tempering behavior and mechanical properties in AISI H13 steel, quenched and tempered from 300 ℃ to 700 ℃ for different tempering time (1, 2, 5, 10, 20 hr) were quantitatively investigated by scanning electron microscopy (SEM), x-ray diffractometer (XRD), impact test machine, rockwell apparatus, ball-on-disk tester. Under the condition that the tempering time is 2 hours, the hardness increases slightly as the tempering temperature increases, but decreases rapidly when the tempering temperature exceeds 500 ℃, while the impact energy increases in proportion to the tempering temperature. Friction tests were conducted in dry condition with a load of 30 N, and the friction coefficient and wear rate according to tempering conditions were measured to prove the correlation with hardness and microstructure. In addition, primary tempering from 300 ℃ to 700 ℃ was performed at various times to establish a kinetic model to predict hardness under specific tempering conditions.

수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구 (A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor)

  • 김용관;박훈재;김강은;홍명표;강경필;이경훈
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

셀 몰드 주조한 SSC13 엘보우 피팅 주강의 고용화율에 따른 델타 페라이트 분율 변화와 내부식특성 (Effect of Austenitizing Ratio on the Delta Ferrite Volume Fraction and Corrosion Resistance of Shell Mold Cast SSC13 Elbow Fitting)

  • 김국진;임수근;주형규;박성준
    • 한국주조공학회지
    • /
    • 제35권5호
    • /
    • pp.109-113
    • /
    • 2015
  • In this study, the measurement of FN (ferrite volume fraction) and the solution annealing ratio at a temperature of $1130^{\circ}C$ were determined with 15A elbow fittings of shell cast SSC13, and the corrosion resistance with and without austenitizing solution annealing were investigated in comparison with AISI304. The delta ferrite phase was observed in the material due to the slow cooling effect of the shell mold casting. However, the delta ferrite phase decreased gradually with the solution annealing at a temperature of $1130^{\circ}C$. The hardness generally decreased with a heat treatment; however, its corrosion resistance was improved with the heat treatment. In addition, when a passivation treatment was applied, its corrosion ratio showed the lowest value. The pattern of general corrosion decreased due to the decrease in the delta ferrite phase with the solution annealing treatment. Consequently, it is suggested that the corrosion resistance of SSC13 elbow fittings can be improved by increasing the ratio of any solution annealing treatment used and by decreasing the ferrite phase. The relationship between the ratio of solution annealing and delta ferrite is expressed as follows: SA (solution annealing ratio,%) = 98 - FN (ferrite volume fraction, %).

STS304 콤팩트 열교환기 고상확산접합부의 접합부 변형과 인장성질에 미치는 접합온도 및 접합압력의 영향 (Effect of Bonding Temperature and Bonding Pressure on Deformation and Tensile Properties of Diffusion Bonded Joint of STS304 Compact Heat Exchanger)

  • 전애정;윤태진;김상호;김현준;강정윤
    • Journal of Welding and Joining
    • /
    • 제32권4호
    • /
    • pp.46-54
    • /
    • 2014
  • In this study, the effect of bonding temperature and bonding pressure on deformation and tensile properties of diffusion bonded joint of STS304 compact heat exchanger was investigated. The diffusion bonds were prepared at 700, 800 and $900^{\circ}C$ for 30, 60 and 90 min in pressure of 3, 5, and 7 MPa under high vacuum condition. The height deformation of joint decreased and the width deformation of joint increased with increasing bonding pressure at $900^{\circ}C$. The ratio of non-bonded layer and void observed in the joint decreased with increasing bonding temperature and bonding pressure. Three types of the fracture surface were observed after tensile test. The non-bonded layer was observed in diffusion bonded joint preformed at $700^{\circ}C$, the non-bonded layer and void were observed at $800^{\circ}C$. On the other hand, the ductile fracture occurred in diffusion bonded joint preformed at $900^{\circ}C$. Tensile load of joint bonded at $800^{\circ}C$ was proportional to length of bonded layer and tensile load of joint bonded at $900^{\circ}C$ was proportional to minimum width of pattern. The tensile strength of joint was same as base metal.