• Title/Summary/Keyword: AISI

Search Result 404, Processing Time 0.055 seconds

The Effect of Residual Stresses on Surface Failure and Wear (잔류응력의 표면파손과 마멸에 대한 영향)

  • Lee, Yeong-Je;Kim, Jin-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.677-682
    • /
    • 2002
  • Break-in is an intentional treatment to enhance the performance life of machinery parts and to maintain static friction behavior. Most studies on break-in have concerned only about surface conditions such as roughness or film formation. But the exact mechanism of break-in has not been found yet. Friction, scuffing behavior and wear of AISI 1045 were studied in relation to break-in and residual stress. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were carried out using a constant load of 730N. In the break-in procedure the step load was applied from 100N to 200N. In this experiment, it was found that the break-in helps compressive residual stress to be formed well enough to enhance the scuffing life during the scuffing test. Specimens that had high compressive residual stress induced by shot-peening show better wear resistance than those were not shot-peened. Results of scuffing test, break-in procedure and wear amount in relation to residual stress have been discussed.

A Study on Friction and Wear Behavior of Carbon Fiber Reinforced Polyetheretherketone (탄소 섬유 보강 폴리에테르에테르케톤의 마찰 및 마모 거동에 관한 연구)

  • Ryu, Seong-Guk;Kim, Gyeong-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.930-937
    • /
    • 2001
  • The friction and wear behavior of short carbon fiber reinforced polyetheretherketone was studied experimentally under dry sliding conditions against SCM440(AISI 4140) disks with different surface roughness and hardness at the low sliding speeds and the high pressures on a pin-on-disk apparatus. Under the low disk surface roughness value the earsplitting noise and stick-slip were occurred. The increased adhesion friction and wear factor with stick-slip made the friction and wear behavior worse. Under the high disk surface hardness the break and falling-off of carbon fibers were accelerated. The carbon fibers fallen off from the matrix were ground into powder between two wear surfaces and this phenomenon caused abrasive friction and wear factor to increase. So the friction and wear behavior became worse. With the transfer film made of wear particles formed on a disk, the carbon powder film formed on a pin lowered a friction coefficient.

Characterisation of Tensile Deformation through Infrared Imaging Technique

  • B. Venkataraman, Baldev Raj;Mukhophadyay, C.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.609-620
    • /
    • 2002
  • It is well known that during tensile testing, a part of the mechanical work done on the specimen is transformed into heat energy. However, the ultimate temperature rise and the rate of temperature rise is related to the nature of the material, conditions of the test and also to the deformation behaviour of the material during loading. The recent advances in infrared sensors and image/data processing techniques enable observation and quantitative analysis of the heat energy dissipated during such tensile tests. In this study, infrared imaging technique has been used to characterise the tensile deformation in AISI type 316 nuclear grade stainless steel. Apart from identifying the different stages during tensile deformation, the technique provided an accurate full-field temperature image by which the point and time of strain localization could be identified. The technique makes it possible to visualise the region of deformation and failure and also predict the exact region of fracture in advance. The effect of thermal gradients on plastic flow in the case of interrupted straining revealed that the interruption of strain and restraining at a lower strain rate not only delays the growth of the temperature gradient, but the temperature rise per unit strain decreases. The technique is a potential NDE tool that can be used for on-line detection of thermal gradients developed during extrusion and metal forming process which can be used for ensuring uniform distribution of plastic strain.

Analytical Study of H-Honeycomb Sandwich Core Structure Model based on Truss (트러스를 기반으로 형성된 H-벌집형 샌드위치 심재 모델의 해석적 연구)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • This paper is a study of the central structural unit model of the sandwich core structure. The applied model is based on the honeycomb structure formed by the truss, the H-shaped honeycomb structure formed by adding the truss of H shape to the space of the center portion, and the honeycomb structure formed by the plate. Applied material property is AISI 304 stainless steel, which has cost effectiveness and easy to get near place. The truss diameter of the model is three different type: 1mm, 2mm and 3mm. ABAQUS software is obtained to do the analysis and applied test is quasi-static loading. Boundary conditions for the analysis are that vertical direction loading at top place without any rotation and bottom surface is fixed. The test results show that the H-truss model has the highest stiffness and yield strength. Therefore, it is hoped that more and more researching for the development of a unit model in sandwich core structure has been investigating and that the developed sandwich core model can be applied into various industrial fields such as mechanical or aerospace industries.

A Study of Localized Corrosion Mechanisms in the Multilayered Coatings by Cathodic Arc Deposition (음극아크증착법으로 합성한 다층박막의 국부부식 기구에 관한 연구)

  • 김호건;안승호;이정호;김정구;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.4
    • /
    • pp.301-306
    • /
    • 2003
  • Multilayered WC-Ti/suv $1-x/Al_{x}$ N coatings were deposited on AISI D2 steel using cathodic arc deposition (CAD) method. These coatings contain structural defects such as pores or droplets. Thus, the substrate is not completely isolated from the corrosive environment. The growth defects (pores, pinholes) in the coatings are detrimental to corrosion resistance of the coatings used in severe corrosion environments. The localized corrosion behavior of the coatings was studied in deaerated 3.5 wt.% NaCl solution using electrochemical techniques (potentiodynamic polarization test) and surface analyses (GDOES, SEM, AES, TEM). The porosity was calculated from the result of potentiodynamic polarization test of the uncoated and coated specimens. The calculated porosity is higher in the $WC-Ti_{0.6}$ $Al_{0.4}$ N than others, which is closely related to the packing factor. The positive effects of greater packing factor act on inhibiting the passage of the corrosive electrolyte to the substrate and lowering the localized corrosion kinetics. From the electrochemical tests and surface analyses, the major corrosion mechanisms can be classified into two basic categories: localized corrosion and galvanic corrosion.

Corrosion resistance of a carbon-steel surface modified by three-dimensional ion implantation and electric arc.

  • Valbuena-Nino, E.D.;Gil, L.;Hernandez, L.;Sanabria, F.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The hybrid method of three-dimensional ion implantation and electric arc is presented as a novel plasma-ion technique that allows by means of high voltage pulsed and electric arc discharges, the bombardment of non-metallic and metallic ions then implanting upon the surface of a solid surface, especially out of metallic nature. In this study AISI/SAE 4140 samples, a tool type steel broadly used in the industry due to its acceptable physicochemical properties, were metallographically prepared then surface modified by implanting titanium and simultaneously titanium and nitrogen particles during 5 min and 10 min. The effect of the ion implantation technique over the substrate surface was analysed by characterization and electrochemical techniques. From the results, the formation of Ti micro-droplets upon the surface after the implantation treatment were observed by micrographs obtained by scanning electron microscopy. The presence of doping particles on the implanted substrates were detected by elemental analysis. The linear polarization resistance, potentiodynamic polarization and total porosity analysis demonstrated that the samples whose implantation treatment with Ti ions for 10 min, offer a better protection against the corrosion compared with non-implanted substrates and implanted at the different conditions in this study.

Effect of fatigue crack propagation on natural frequencies of system in AISI 4140 Steel

  • Bilge, Habibullah;Doruk, Emre;Findik, Fehim;Pakdil, Murat
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • In this study, we investigated the effect of fatigue crack propagation of the beams which have a vital importance in engineering applications, on the natural frequency of the system. Beams which have a wide range of applications, are used as fundamental structural elements in engineering structures. Therefore, early detection of any damages in these structures is of vital importance for the prevention of possible destructive damages. One of the widely used methods of early detection of damages is the vibration analysis of the structure. Hence, it is of vital importance to detect and monitor any changes in the natural frequencies of the structure. From this standpoint, in this study we experimentally investigated the effect of fatigue crack propagation on beams produced from 4140 steel, of the natural frequency of the beam. A crack was opened on the $8{\times}16{\times}500mm$ beam using a 3 mm long and 0.25 mm wide wire erosion. The beam, then, underwent 3 point bending tests at 10 Hz with a dynamic fatigue device and its natural frequencies were measured in scheduled intervals and any changes taking place on the natural frequencies of the beam were measured. This data allowed us to identify and measure the crack occurring on the beam subjected to dynamic loading, during the propagation phase. This method produced experimental data. The experimental data showed that the natural frequency of the beam decreased with the propagation of the fatigue crack on the beam.

Theoretical Study of Various Unit Models for Biomedical Application

  • Choi, Jeongho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • This paper presents an analytical study on the strength and stiffness of various types of truss structures. The applied models are triangular-like opened truss-wall triangular model (OTT), closed truss-wall triangular model (CTT), opened solid-wall triangular model (OST), and hypercube models defined as core-filled or core-spaced cube. The models are analyzed by numerical model analysis using DEFORM 2D/3D tool with AISI 304 stainless steel. Then, the ideal solutions for stiffness and strength are defined. Finally, the relative elastic modulus of the core-spaced model is obtained as 0.0009, which is correlated with the cancellous bone for the relative density range of 0.029-0.03, and the relative elastic modulus for the core-filled model is obtained as 0.0015, which is correlated with cancellous bone for the relative density range of 0.035-0.036. For the relative compressive yield strength, the OTT reasonably agrees with the cancellous bone for the relative density of 0.042 and the relative compressive strength of 0.05. The CTT and OST are in good agreement at the relative density of 0.013 and the relative compressive yield strength of 0.002. The hypercube models can be used for the cancellous bone for stiffness, and the triangular models can be used for the cancellous bone for strength. However, none of the models can be used to replace the compact bone because it requires much higher stiffness and strength. In the near future, compact bone replacement must be further studied. In addition, previously mentioned models should be developed further.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Uniaxial fatigue, creep and stress-strain responses of steel 30CrNiMo8

  • Brnic, Josip;Brcic, Marino;Krscanski, Sanjin;Lanc, Domagoj;Chen, Sijie
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.409-417
    • /
    • 2019
  • The choice of individual material for industrial application is primarily based on knowledge of its behavior in similar applications and similar environmental conditions. Contemporary design implies knowledge of material behavior and knowledge in the area of structural analysis supported by large capacity computers. Bearing this in mind, this paper presents and analyzes the experimental results related to the mechanical properties of the material considered (30CrNiMo8/1.6580/AISI 4340) at different temperatures as well as its creep and fatigue behavior. All experimental tests were carried out as uniaxial tests. The test results related to the mechanical properties are presented in the form of engineering stress-strain diagrams. The results related to the creep behavior of the material are shown in the form of creep curves, while the fatigue of the material is shown in the form of stress - life (S - N) diagram. Based on these experimental results, the values of the following properties are determined: ultimate tensile strength (${\sigma}_{m,20}=696MPa$), yield strength (${\sigma}_{0.2,20}=355.5MPa$), modulus of elasticity ($E_{,20}=217GPa$) and fatigue limit (${\sigma}_{f,20,R=-1}=280.4MPa$). Results related to fatigue tests were obtained at room temperature and stress ratio R = -1.