• Title/Summary/Keyword: AIRS

Search Result 68, Processing Time 0.024 seconds

Validation of the Atmospheric Infrared Sounder Water Vapor Retrievals Using Global Positioning System: Case Study in South Korea

  • Won, Ji-Hye;Park, Kwan-Dong;Kim, Du-Sik;Ha, Ji-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • The atmospheric infrared sounder (AIRS) sensor loaded on the Aqua satellite observes the global vertical structure of atmosphere and enables verification of the water vapor distribution over the entire area of South Korea. In this study, we performed a comparative analysis of the accuracy of the total precipitable water (TPW) provided as the AIRS level 2 standard retrieval product by Jet Propulsion Laboratory (JPL) over the South Korean area using the global positioning system (GPS) TPW data. The analysis TPW for the period of one year in 2008 showed that the accuracy of the data produced by the combination of the Advanced Microwave Sounding Unit sensor with the AIRS sensor to correct the effect of clouds (AIRS-X) was higher than that of the AIRS IR-only data (AIRS-I). The annual means of the root mean square error with reference to the GPS data were 5.2 kg/$m^2$ and 4.3 kg/$m^2$ for AIRS-I and AIRS-X, respectively. The accuracy of AIRS-X was higher in summer than in winter while measurement values of AIRS-I and AIRS-X were lower than those of GPS TPW to some extent.

Syllable-based Korean Named Entity Recognition and Slot Filling with ELECTRA (ELECTRA 모델을 이용한 음절 기반 한국어 개체명 인식과 슬롯 필링)

  • Do, Soojong;Park, Cheoneum;Lee, Cheongjae;Han, Kyuyeol;Lee, Mirye
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.337-342
    • /
    • 2020
  • 음절 기반 모델은 음절 하나가 모델의 입력이 되며, 형태소 분석을 기반으로 하는 모델에서 발생하는 에러 전파(error propagation)와 미등록어 문제를 회피할 수 있다. 개체명 인식은 주어진 문장에서 고유한 의미를 갖는 단어를 찾아 개체 범주로 분류하는 자연어처리 태스크이며, 슬롯 필링(slot filling)은 문장 안에서 의미 정보를 추출하는 자연어이해 태스크이다. 본 논문에서는 자동차 도메인 슬롯 필링 데이터셋을 구축하며, 음절 단위로 한국어 개체명 인식과 슬롯 필링을 수행하고, 성능 향상을 위하여 한국어 대용량 코퍼스를 음절 단위로 사전학습한 ELECTRA 모델 기반 학습방법을 제안한다. 실험 결과, 국립국어원 문어체 개체명 데이터셋에서 F1 88.93%, ETRI 데이터셋에서는 F1 94.85%, 자동차 도메인 슬롯 필링에서는 F1 94.74%로 우수한 성능을 보였다. 이에 따라, 본 논문에서 제안한 방법이 의미있음을 알 수 있다.

  • PDF

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.

Observation of Atmospheric Water Vapors Using AIRS (AIRS를 이용한 대기 수증기 관측)

  • Ha, Ji-Hyun;Kim, Du-Sik;Park, Kwan-Dong;Won, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.547-554
    • /
    • 2009
  • The Atmospheric Infrared Sounder (AIRS) aboard the Aqua satellite, which is one of the Earth Observing System satellites managed by National Aeronautics and Space Administration, provides global measurements of the water vapor in the atmosphere using infrared (IR) channels. In this paper, we restored precipitable water vapor (PWV) over a permanent GPS station in Incheon using the IR measurements of AIRS and compared the result with GPS-based PWV estimates. As a result, AIRS PWV had similar trends with GPS PWV; the bias of AIRS PWV against GPS PWV is 0.3 cm and root mean square error (RMSE) 0.7 cm. In addition, the correlation coefficient between AIRS PWV and GPS PWV was 0.89. Thus we conclude that the AIRS PWV reflects local characteristics of the water vapor content.

Web-based Fluid Dynamics Education using e-AIRS System (e-AIRS 환경을 활용한 웹기반의 유체역학 교육)

  • Kim, J.H.;Yi, J.S.;Ko, S.H.;Kim, C.;Kim, Y.H.;Moon, J.B.;Cho, K.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.212-215
    • /
    • 2008
  • e-AIRS, an abbreviation of 'e-Science Aerospace Integrated Research System,' is a virtual organization supporting CFD(computational fluid dynamics) simulations, remote experimental service, and collaborative and integrative study between computation and experiment. e-AIRS works on the e-Science environment and research process is accomplished through the web portal. By the system development since 2005, a stable education system with the full support on fluid dynamics is successfully established and utilized to various fluid dynamic lectures in universities. By using e-AIRS system during a lecture, students can conduct the full CFD simulation process on the web and inspect the wind tunnel experiment via Access Grid. This kind of interactive lecture makes students to have a deeper understanding on the physics of fluid, as well as the characteristics of numerical techniques. The current paper will describe system components of e-AIRS and its utilization on education.

  • PDF

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

e-AIRS: Construction of an Aerodynamic Integrated Research System on the e-Science Infrastructure (e-AITS: e-Science 인프라 기반의 항공우주 공력통합연구 환경구축)

  • Kim, Jin-Ho;Yi, Jun-Sok;Ko, Soon-Heum;Ahn, Jae-Wan;Kim, Chong-Am;Kim, Yoon-Hee;Cho, Kum-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.428-437
    • /
    • 2008
  • e-AIRS, an abbreviation of ‘e-Aerospace Integrated Research System’, is a virtual organization designed to support the aerospace engineering processes in the e-Science environment. As the first step toward a virtual aerospace engineering organization, the e-AIRS intends to give a full support to aerodynamic research processes. Currently, the e-AIRS can handle both the computational and experimental aerodynamic researches on the e-Science infrastructure. In detail, users can conduct the full CFD(Computational Fluid Dynamics) research processes, request wind tunnel experiments, perform the comparative analysis between computational and experimental resultants and finally collaborate with other researchers using the web portal. The current paper will describe those functions and the internal architecture of the e-AIRS system.

THE EXTRACTION OF THE THERMAL RADIATION ASSOCIATED WITH GREENHOUSE GASES FROM AIRS MEASUREMENTS

  • Kwon, Eun-Han;Kim, Yong-Seung;Lee, Sun-Gu
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.301-304
    • /
    • 2006
  • For the purpose of investigating the contributions of various gases to climate change, the thermal radiation associated with greenhouse gases are extracted from AIRS (Atmospheric Infrared Sounder) infrared radiances over the tropical pacific region. AIRS instrument which was launched on the EOS-Aqua satellite in May 2002 covers the spectral range from 650 cm-1 to 2700 cm-1 with a spectral resolution of between 0.4 cm-1 and 1 cm-1. In order to extract the thermal radiation absorbed by individual gases, the interfering background radiances at the top of the atmosphere are simulated using the radiative transfer code MODTRAN (MODerate spectral resolution atmospheric TRANsmittance). The simulations incorporated the temperature and water vapor profiles taken from NCEP (National Centers for Environmental Prediction) reanalyses. The differences between the simulated background radiance and AIRS-measured radiance result in the absorption of upward longwave radiation by atmospheric gases (i.e. greenhouse effect). The extracted absorption bands of individual gases will allow us to quantify the radiative forcing of individual greenhouse gases and thus those data will be useful for climate change studies and for the validation of radiative transfer codes used in general circulation models.

  • PDF

Preprocessing of the Direct-broadcast Data from the Atmospheric Infared Sounder (AIRS) Sounding Suite on Aqua Satellite

  • Kim, Seungbum;Park, Hyesook;Kim, Kumlan;Park, Seunghwan;Kim, Moongyu;Lee, Jongju
    • Atmosphere
    • /
    • v.13 no.4
    • /
    • pp.71-79
    • /
    • 2003
  • We present a pre processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy [s1]of a radiosonde (1 K in 1-km layer for temperature and 10% in 2-km layer for humidity). The core of the pre p rocessor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction to compute the Earth's radiance. Then we remove spurious data and retrieve the brightness temperature (Tb). Since we process the direct-broadcast data almost for the first time among the AIRS directbroadcast community, special attention is needed to understand and verify the products. This includes the pixel-to-pixel verification of the direct-broadcast product with reference to the fullorbit product, which shows the difference of less than $10^{-3}$ K in IR Tb.

Web based CFD Simulation Service Improvement and Utilization (웹기반 열유체 시뮬레이션 서비스의 개선 및 활용)

  • Jung, Young Jin;Jin, Du-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1160-1167
    • /
    • 2013
  • Web based simulation service is utilized to computationally analyze various phenomena in real world according to the progress of network and computing technology. In this paper, we present an improvement and utilization of e-AIRS (e-Science Aerospace Integrated Research System). e-AIRS, has been utilized to support web based CFD simulation service since 2008. has some problems such as stable system, pre processing, post processing. To solver this problem, we improved e-AIRS such as distributed service processing, personal simulation job assignment control, and faster data loading. After improvement, although users increase from 110 to 606, the priority of user requirements is changed from stable system to pre/post processor. User requirements and statistics about e-AIRS simulation service for each semester is analyzed to support more stable and comfortable service.