• Title/Summary/Keyword: AIR 모델

Search Result 2,267, Processing Time 0.031 seconds

Regional Background Levels of Carbon Monoxide Observed in East Asia during 1991~2004 (1991~2004년 동아시아에서 관측한 일산화탄소의 지역적 배경 농도)

  • Kim, Hak-Sung;Chung, Yong-Seung
    • Journal of the Korean earth science society
    • /
    • v.27 no.6
    • /
    • pp.643-652
    • /
    • 2006
  • Data of the carbon monoxide concentration observed in Mt. Waliguan in China (WLG), Ulaan Uul in Mongolia (UUM), Tae-ahn Peninsula in Korea (TAP), and Ryori in Japan (RYO) were analyzed for a long period between 1991 and 2004. The annual average concentration of carbon monoxide was the highest at TAP $(233{\pm}41ppb)$ followed by $RYO(171{\pm}36ppb),\;UUM(155{\pm}26ppb),\;and\;WLG(135{\pm}22ppb)$. The seasonal variations being high in spring and low in summer were observed in other areas of Eastern Asia except WLG. TAP was high in carbon monoxide concentration in all seasons compared to WLG, UUM and RYO and shows wide distribution of concentration in the histogram, which is caused by the influence of large-scale air pollution due to its downwind location close to the East Asian continent, China in particular. Also, our data was compared with data measured at Mauna Loa (MLO) in Hawaii. According to the origin of the isentropic backward trajectory and its transport passage, carbon monoxide concentration observed in TAP was analyzed as follows: continental background airflows (CBG) were $216{\pm}47ppb$; regionally polluted continental airflows (RPC) were $316{\pm}56ppb$; Oceanic background airflows (OBG) were $108{\pm}41ppb$; and Partly perturbed oceanic airflows (PPO) were $161{\pm}6ppb$. The high concentration of carbon monoxide in TAP is due to the airflow from East Asian continent origin rather than that from the North Pacific origin. Especially, RPC which passes through the eastern China appeared to be the highest in concentration in spring, fall, and winter. However, OBG was affected by the North Pacific air mass with a low carbon monoxide concentration in summer. The NOAA satellite images and GEOS-CHEM model simulation confirmed a large-scale air pollution event that was in the course of expansion from southeastern China bound to the Korean Peninsula and the Korea East Sea by way of the Yellow Sea.

Measurement of Dynamic Stability Derivatives of Tailless Lamda-shape UAV using Forced Oscillation Method (강제진동 기법을 이용한 무미익 비행체의 동안정 미계수 측정)

  • Yang, Kwangjin;Chung, Hyoungseog;Cho, Donghyun;An, Eunhye;Ko, Joonsoo;Hong, JinSung;Kim, Yongduk;Lee, MyungSup;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.552-561
    • /
    • 2016
  • In this experimental study, the dynamic stability derivatives of a tailless lambda-shape UAV are estimated from time history data of aerodynamic moments measured from the internal balance while the test model is forced to oscillate at given frequencies and amplitudes. A 3-axis forced oscillation apparatus is designed to induce decoupled roll, yaw, pitch oscillations respectively. The results show that the roll damping derivatives remain stable at the entire range of angle of attack tested, whereas the pitch damping derivatives become unstable beyond $15^{\circ}$ angle of attack. The amplitude and frequency have little impact on roll damping derivatives while the smaller amplitude and frequency of oscillation improves the pitch stability. The yaw damping derivative values are fairly small as expected for a tailless configuration. The results indicate that the proposed methodology and test apparatus area valid for estimating the dynamic stability derivatives of a tailless UAV.

Developmental Rate Equations for Predicting Bud Bursting Date of 'Campbell Early' (Vitis labrusca) Grapevines (발육 속도 모델을 이용한 포도 '캠벨얼리'의 발아기 예측)

  • Yun, Seok-Kyu;Shin, Yong-Uk;Yun, Ik-Koo;Nam, Eun-Young;Han, Jeom-Wha;Choi, In-Myung;Yu, Duk-Jun;Lee, Hee-Jae
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.181-186
    • /
    • 2011
  • To predict the bud bursting date of 'Campbell Early' grapevines, the bud developmental rate (DVR) models were constructed. The DVRs for bud bursting were calculated from the demanded times at controlled air temperatures. The DVRs were examined on the 'Campbell Early' grapevines incubated in three different temperatures at 4.6, 11.8, and $16.6^{\circ}C$. The DVR increased exponentially or linearly on the air temperature with a slope of about 0.0019. The DVR equations were computed as $DVR=0.0249+0.0020e^{0.1654x}$ or DVR = 0.0019x + 0.0187. These DVR equations offered developmental indices and predicted dates for bud bursting with air temperature data. The DVR equations were validated to the bud bursting data observed in the field. When bud bursting dates were calculated with daily temperature data, the root mean squared error (RMSE) between the observed and the predicted dates was less than 4 days. When those were calculated with hourly temperature data, on the other hand, the RMSE was less than 3 days. These results suggest that the DVR models are useful to predict bud bursting date of 'Campbell Early' grapevines.

Analysis on Retrofit Method to Improve TP treatment efficiency in Air-vent SBR process installed MWTP and RCSTP during winter based on Modeling (모델링 기반의 선회와류식 SBR 공법이 적용된 하수처리장 및 마을하수도 동절기 총인 개선방안 연구)

  • Lee, Hyunseop;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.251-256
    • /
    • 2019
  • In the upstream and nearby areas of the water source, there are many areas where the sewerage penetration rate is relatively low due to development restrictions. This has been continuously affecting the pollution of the water source. As a measure to prevent this, method of distributing sewage and improving existing facilities are suggested. In this study, A MWTP(Municipal Watewater Treatment Plant) using the Air-vent SBR process located at upstream of An-dong and Im-ha Dam was selected as a modeling facility. And, the retrofit method to improve the effluent from RCSTP(Rural Community Sewage Tratment Plant) was induced based on A MWTP modeling result. The model construction and verification were carried out based on the operating data for 5 years (2012 ~ 2016). As a result, it was analyzed that the water quality of the effluent during the winter could be improved through control of cycle time in Air-vent SBR process and decreasing SRT (BOD: 1.8%, COD: 54.5%, SS: 4.3%, T-N; 0.8% and T-P: 7.7%). This research suggests that result of this research can be utilized as a retrofit method to improve the effluent overall treatment efficiency of the MWTP and the RCSTP which have similar operation process.

Free-air anomaly from Airborne Gravity Surveying (항공중력측정에 의한 프리에어 이상 산출)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Lee, Bo-Mi;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2009
  • The gravity data collected and reserved in Korea is seriously biased in its distribution. That is, only the west-southern part of the peninsula including Chungcheong and Jeonla area has dense distribution while only a part is covered in Gyoungsang area. Especially, the low density of the gravity data in mountainous area basically limits the accuracy of the gravimetric geoid in Korea. As one of the solution to overcome the problem, an airborne gravity survey were conducted from Dec. 2008 $\sim$ Jan. 2009. In this study, free-air gravity anomaly derived from the airborne gravity data which has consistent quality are presented. The data processing for the airborne gravity is composed of several corrections of errors such as errors from gravity measurement, errors from flight dynamics, errors from GPS, and errors from time synchronization. We presented detailed explanations on the data processing with the final cross-over results. The free-air anomaly from airborne gravity finally shows the cross-over accuracy of 2.21mGal which reflects the precision of each track is 1.56mGal. It is expected that the result from this study will play a role as input data in precision geoid determination with ground and ship-borne gravity data after appropriate fusion process.

A Numerical Study on Smoke Behavior of Fishing Vessel Engine Room (어선 기관실의 연기 거동에 관한 수치해석 연구)

  • JANG, Ho-Sung;JI, Sang-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.683-690
    • /
    • 2021
  • The ventilation system of the engine room of a ship is generally installed to supply the combustion air necessary for the internal combustion engine and to remove the heat source generated in the engine room, and it must satisfy the international standard (ISO 8861) for the design conditions and calculation standards for the ventilation of the ship engine room. The response delay of the ventilation system including the fire detector is affected by the airflow formed inside the area and the location of the fire detector. In this study, to improve the initial fire detection response speed of a fire detector installed on a fishing vessel and to maintain the sensitivity of the installed detector, the smoke behavior was simulated using the air flow field inside the engine room, the amount of combustion air in the internal combustion engine, and the internal pressure of the engine room as variables. Analysis of the simulation results showed that reducing the flow rate in the air flow field and increasing the vortex by reducing the internal pressure of the engine room and installing a smoke curtain would accelerate the rise of the ceiling of the smoke component and improve the smoke detector response speed and ventilation system.

Anthracite Oxygen Combustion Simulation in 0.1MWth Circulating Fluidized Bed (0.1 MWth 급 순환유동층에서의 무연탄 연소 전산유체역학 모사)

  • Go, Eun Sol;Kook, Jin Woo;Seo, Kwang Won;Seo, Su Been;Kim, Hyung Woo;Kang, Seo Yeong;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.417-428
    • /
    • 2021
  • The combustion characteristics of anthracite, which follow a complex process with low reactivity, must be considered through the dynamic behavior of circulating fluidized bed (CFB) boilers. In this study, computational fluid dynamics (CFD) simulation was performed to analyze the combustion characteristics of anthracite in a pilot scale 0.1 MWth Oxy-fuel circulating fluidized bed (Oxy-CFB) boiler. The 0.1MWth Oxy-CFB boiler is composed of combustor (0.15 m l.D., 10 m High), cyclone, return leg, and so on. To perform CFD analysis, a 3D simulation model reactor was designed and used. The anthracite used in the experiment has an average particle size of 1,070 ㎛ and a density of 2,326 kg/m3. The flow pattern of gas-solids inside the reactor according to the change of combustion environment from air combustion to oxygen combustion was investigated. At this time, it was found that the temperature distribution in air combustion and oxygen combustion showed a similar pattern, but the pressure distribution was lower in oxygen combustion. addition, since it has a higher CO2 concentration in oxygen combustion than in air combustion, it can be expected that carbon dioxide capture will take place actively. As a result, it was confirmed that this study can contribute to the optimized design and operation of a circulating fluidized bed reactor using anthracite.

Development of Air Flow Simulator in Agricultural Facility based on Virtual Reality (가상현실 기반 농업시설 공기유동 시뮬레이터의 개발)

  • Noh, Jae Seung;Kim, Yu Yong;Yoo, Young Ji;Kwon, Jin Kyung;Lee, In Bok;Kim, Rack Woo;Kim, Jun Gyu
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.16-27
    • /
    • 2019
  • Using virtual reality technology, users can learn and experience many interactions in virtual space like the actual physical space. This study was conducted to develop air flow simulator that allows farmers and consultants to consult air flow through VR devices by creating a greenhouse or pigpen model. It can help educate farmers about the importance of ventilation effects for agricultural facilities. We proposed CFD visualization system by building a virtual reality environment and constructing database of CFD and structure of agricultural facilities. After consultants can set up situations according to environmental conditions, the users experience the visualized air flow of agricultural facility according to the ventilation effects. Also it can provide a quantified environmental distribution in the agricultural facility. Currently, the CFD data in agricultural facilities are established during winter and summer. In order to experience various environmental conditions in the developed system, The experts need to run CFD data under various environmental conditions and register them in the system requirements.

Estimation and Evaluation of Reanalysis Air Temperature based on Mountain Meteorological Observation (산악기상정보 융합 기반 재분석 기온 데이터의 추정 및 검증)

  • Sunghyun, Min;Sukhee, Yoon;Myongsoo, Won;Junghwa, Chun;Keunchang, Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.244-255
    • /
    • 2022
  • This study estimated and evaluated the high resolution (1km) gridded mountain meteorology data of daily mean, maximum and minimum temperature based on ASOS (Automated Surface Observing System), AWS (Automatic Weather Stations) and AMOS (Automatic Mountain Meteorology Observation System) in South Korea. The ASOS, AWS, and AMOS meteorology data which were located above 200m was classified as mountainous area. And the ASOS, AWS, and AMOS meteorology data which were located under 200m was classified as non-mountainous area. The bias-correction method was used for correct air temperature over complex mountainous area and the performance of enhanced daily coefficients based on the AMOS and mountainous area observing meteorology data was evaluated using the observed daily mean, maximum and minimum temperature. As a result, the evaluation results show that RMSE (Root Mean Square Error) of air temperature using the enhanced coefficients based on the mountainous area observed meteorology data is smaller as 30% (mean), 50% (minimum), and 37% (maximum) than that of using non-mountainous area observed meteorology data. It indicates that the enhanced weather coefficients based on the AMOS and mountain ASOS can estimate mean, maximum, and minimum temperature data reasonably and the temperature results can provide useful input data on several climatological and forest disaster prediction studies.

Proximal Policy Optimization Reinforcement Learning based Optimal Path Planning Study of Surion Agent against Enemy Air Defense Threats (근접 정책 최적화 기반의 적 대공 방어 위협하 수리온 에이전트의 최적 기동경로 도출 연구)

  • Jae-Hwan Kim;Jong-Hwan Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • The Korean Helicopter Development Program has successfully introduced the Surion helicopter, a versatile multi-domain operational aircraft that replaces the aging UH-1 and 500MD helicopters. Specifically designed for maneuverability, the Surion plays a crucial role in low-altitude tactical maneuvers for personnel transportation and specific missions, emphasizing the helicopter's survivability. Despite the significance of its low-altitude tactical maneuver capability, there is a notable gap in research focusing on multi-mission tactical maneuvers that consider the risk factors associated with deploying the Surion in the presence of enemy air defenses. This study addresses this gap by exploring a method to enhance the Surion's low-altitude maneuvering paths, incorporating information about enemy air defenses. Leveraging the Proximal Policy Optimization (PPO) algorithm, a reinforcement learning-based approach, the research aims to optimize the helicopter's path planning. Visualized experiments were conducted using a Surion model implemented in the Unity environment and ML-Agents library. The proposed method resulted in a rapid and stable policy convergence for generating optimal maneuvering paths for the Surion. The experiments, based on two key criteria, "operation time" and "minimum damage," revealed distinct optimal paths. This divergence suggests the potential for effective tactical maneuvers in low-altitude situations, considering the risk factors associated with enemy air defenses. Importantly, the Surion's capability for remote control in all directions enhances its adaptability in complex operational environments.